33 research outputs found

    Finished Genome Sequences of Xanthomonas fragariae, the Cause of Bacterial Angular Leaf Spot of Strawberry.

    Get PDF
    Xanthomonas fragariae is a foliar pathogen of strawberry that is of significant concern to nursery production of strawberry transplants and field production of strawberry fruit. Long-read sequencing was employed to generate finished genomes for two isolates (each with one chromosome and two plasmids) from symptomatic plants in northern California

    Spatial scales of interactions among bacteria and between bacteria and the leaf surface.

    Get PDF
    Microbial life on plant leaves is characterized by a multitude of interactions between leaf colonizers and their environment. While the existence of many of these interactions has been confirmed, their spatial scale or reach often remained unknown. In this study, we applied spatial point pattern analysis to 244 distribution patterns of Pantoea agglomerans and Pseudomonas syringae on bean leaves. The results showed that bacterial colonizers of leaves interact with their environment at different spatial scales. Interactions among bacteria were often confined to small spatial scales up to 5-20 μm, compared to interactions between bacteria and leaf surface structures such as trichomes which could be observed in excess of 100 μm. Spatial point-pattern analyses prove a comprehensive tool to determine the different spatial scales of bacterial interactions on plant leaves and will help microbiologists to better understand the interplay between these interactions

    Finished Genome Sequence of Collimonas arenae Cal35.

    Get PDF
    We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads

    Inhibition of Xanthomonas fragariae, Causative Agent of Angular Leaf Spot of Strawberry, through Iron Deprivation.

    Get PDF
    In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae's ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of 'nutritional immunity,' the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota

    Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles

    Get PDF
    In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: 1) the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC-FID), and 2) the number and size of fructose-permeable sites on the cuticle, which was achieved using a green fluorescent protein (GFP)-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39x10-9 m s-1, while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37 % of the surface of the cuticles under study. Combined, the GC-FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.2x10-7 m s-1. To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.
    corecore