97 research outputs found

    The context of gene expression regulation

    Get PDF
    Recent advances in sequencing technologies have uncovered a world of RNAs that do not code for proteins, known as non-protein coding RNAs, that play important roles in gene regulation. Along with histone modifications and transcription factors, non-coding RNA is part of a layer of transcriptional control on top of the DNA code. This layer of components and their interactions specifically enables (or disables) the modulation of three-dimensional folding of chromatin to create a context for transcriptional regulation that underlies cell-specific transcription. In this perspective, we propose a structural and functional hierarchy, in which the DNA code, proteins and non-coding RNAs act as context creators to fold chromosomes and regulate genes

    A pathway for mitotic chromosome formation

    Get PDF
    Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central spiral staircase condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding

    Microarray amplification bias: loss of 30% differentially expressed genes due to long probe – poly(A)-tail distances

    Get PDF
    BACKGROUND: Laser microdissection microscopy has become a rising tool to assess gene expression profiles of pure cell populations. Given the low yield of RNA, a second round of amplification is usually mandatory to yield sufficient amplified-RNA for microarray approaches. Since amplification induces truncation of RNA molecules, we studied the impact of a second round of amplification on identification of differentially expressed genes in relation to the probe - poly(A)-tail distances. RESULTS: Disagreement was observed between gene expression profiles acquired after a second round of amplification compared to a single round. Thirty percent of the differentially expressed genes identified after one round of amplification were not detected after two rounds. These inconsistent genes have a significant longer probe - poly(A)-tail distance. qRT-PCR on unamplified RNA confirmed differential expression of genes with a probe - poly(A)-tail distance >500 nucleotides appearing only after one round of amplification. CONCLUSION: Our data demonstrate a marked loss of 30% of truly differentially expressed genes after a second round of amplification. Therefore, we strongly recommend improvement of amplification procedures and importance of microarray probe design to allow detection of all differentially expressed genes in case of limited amounts of RNA

    Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    Get PDF
    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies
    corecore