116 research outputs found

    Frequency modulation of spin torque oscillator pairs

    Full text link
    The current controlled modulation of nano-contact based spin torque oscillator (STO) pairs is studied in both the synchronized and non-synchronized states. The synchronized state shows a well behaved modulation and demonstrates robust mutual locking even under strong modulation. The power distribution of the modulation sidebands can be quantitatively described by assuming a single oscillator model. However, in the non-synchronized state, the modulation sidebands are not well described by the model, indicating interactions between the two individual nano-contact STOs. These findings are promising for potential applications requiring the modulation of large synchronized STO arrays

    Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators

    Full text link
    Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle θe\theta_e between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with θe\theta_e, while the power of the self-localized mode has a broad maximum near θe=40\theta_e = 40 deg, and exponentially vanishes near the critical angle θe=58\theta_e = 58 deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles 58<θe<9058<\theta_e<90 deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.Comment: 8 pages, 6 figure

    Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    Full text link
    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity (d2f/dIdc2d^{2}f/dI^{2}_{dc} being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.Comment: 4 pages, 4 figure

    Bias dependence of perpendicular spin torque and of free and fixed layer eigenmodes in MgO-based nanopillars

    Full text link
    We have measured the bias voltage and field dependence of eigenmode frequencies in a magnetic tunnel junction with MgO barrier. We show that both free layer (FL) and reference layer (RL) modes are excited, and that a cross-over between these modes is observed by varying external field and bias voltage. The bias voltage dependence of the FL and RL modes are shown to be dramatically different. The bias dependence of the FL modes is linear in bias voltage, whereas that of the RL mode is strongly quadratic. Using modeling and micromagnetic simulations, we show that the linear bias dependence of FL frequencies is primarily due to a linear dependence of the perpendicular spin torque on bias voltage, whereas the quadratic dependence of the RL on bias voltage is dominated by the reduction of exchange bias due to Joule heating, and is not attributable to a quadratic dependence of the perpendicular spin torque on bias voltage
    • …
    corecore