9 research outputs found

    Transcranial Magnetic Stimulation for the treatment of tinnitus: Effects on cortical excitability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low frequency repetitive transcranial magnetic stimulation (rTMS) has been proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5 consecutive days. Active and sham treatments were separated by one week. Parameters of cortical excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent period) were measured serially before and after rTMS treatment by using single- and paired-pulse transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-questionnaire.</p> <p>Results</p> <p>We noted a significant interaction between treatment response and changes in motor cortex excitability during active rTMS. Specifically, clinical improvement was associated with an increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent period. These results indicate that intraindividual changes in cortical excitability may serve as a correlate of response to rTMS treatment.</p> <p>Conclusion</p> <p>The observed alterations of cortical excitability suggest that low frequency rTMS may evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory function.</p

    Adaptions during the acquisition of expertise

    Get PDF

    Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients

    No full text
    Adoptive T cell therapy has been successfully used for treatment of viral and malignant diseases. However, little is known about the fate and trafficking of transferred Ag-specific T cells. Using the tetramer (TM) technology which allows for detection and quantification of Ag-specific CTL, we assessed the frequency of circulating Melan-A-specific CTL in advanced melanoma patients during adoptive T cell therapy. Melan-A-specific CTL were generated from HLA-A2.1(+) patients by in vitro stimulation of CD8(+) T cells with dendritic cells pulsed with a mutated HLA-A2-binding Melan-A (ELAGIGILTV) peptide. Eight patients received three infusions of 0.25-11 x 10(8) Melan-A-specific CTL i.v. at 2-wk intervals along with low-dose IL-2. The transferred T cell product contained a mean of 42.1% Melan-A-TM(+) CTL. Before therapy, the frequencies of Melan-A-specific CTL in patients' circulating CD8(+) T cells ranged from 0.01 to 0.07%. Characterization of the TM frequencies before and at different time points after transfer revealed an increase of circulating Melan-A-specific CTL up to 2%, correlating well with the number of transferred CTL. An elevated frequency of TM(+) T cells was demonstrated up to 14 days after transfer, suggesting long-term survival and/or proliferation of transferred CTL. Combining TM analysis with a flow cytometry-based cytokine secretion assay, unimpaired production of IFN-gamma was demonstrated in vivo for at least 24 h after transfer. Indium-111 labeling of Melan-A-specific CTL demonstrated localization of transferred CTL to metastatic sites as early as 48 h after injection. Overall, the results suggest that in vitro-generated Melan-A-specific CTL survive intact in vivo for several weeks and localize preferentially to tumor

    Transcranial Magnetic Stimulation for the treatment of tinnitus: Effects on cortical excitability-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Transcranial Magnetic Stimulation for the treatment of tinnitus: Effects on cortical excitability"</p><p>http://www.biomedcentral.com/1471-2202/8/45</p><p>BMC Neuroscience 2007;8():45-45.</p><p>Published online 2 Jul 2007</p><p>PMCID:PMC1929114.</p><p></p>ion system

    Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination

    No full text
    To assess the role of NOD2/CARD15 variants on the long-term outcome of allogeneic stem cell transplantation in a genetically homogeneous group, we extended our previous study (cohort I, n = 78) and typed DNA for NOD2/CARD15 single nucleotide polymorphisms (SNPs) from an additional 225 recipients and their HLA-identical sibling donors (cohort II) treated at four other European centers. Results of genotyping were compared with clinical outcome. The strong association of NOD2/CARD15 variants with transplantation-related mortality (TRM) was confirmed in univariate and multivariate analysis; TRM increased from 20% in cohort I/22% in cohort II in recipient/donor pairs without any NOD2/CARD15 variants to 47% in cohort I/32% in cohort II in the presence of one variant in either donor or recipient and further to 57% in cohort I/74% in cohort II in the presence of 2 or more variants (P < .002 in both cohorts). NOD2/CARD15 SNPs were not associated with relapse rate but had a strong impact on overall survival. In an analysis of center effects, the type of gastrointestinal decontamination was the only factor interfering with the prognostic significance of NOD2/CARD15 SNPs. Our data further support an interaction between gastrointestinal defense mechanisms, activation of the innate immune system, and specific transplant-related complications
    corecore