33 research outputs found

    Flow-dependent regulation of endothelial Tie2 by GATA3 in vivo

    Full text link
    BACKGROUND Reduced endothelial Tie2 expression occurs in diverse experimental models of critical illness, and experimental Tie2 suppression is sufficient to increase spontaneous vascular permeability. Looking for a common denominator among different critical illnesses that could drive the same Tie2 suppressive (thereby leak inducing) phenotype, we identified "circulatory shock" as a shared feature and postulated a flow-dependency of Tie2 gene expression in a GATA3 dependent manner. Here, we analyzed if this mechanism of flow-regulation of gene expression exists in vivo in the absence of inflammation. RESULTS To experimentally mimic a shock-like situation, we developed a murine model of clonidine-induced hypotension by targeting a reduced mean arterial pressure (MAP) of approximately 50% over 4 h. We found that hypotension-induced reduction of flow in the absence of confounding disease factors (i.e., inflammation, injury, among others) is sufficient to suppress GATA3 and Tie2 transcription. Conditional endothelial-specific GATA3 knockdown (B6-Gata3tm1Jfz^{tm1-Jfz} VE-Cadherin(PAC)-cerERT2) led to baseline Tie2 suppression inducing spontaneous vascular leak. On the contrary, the transient overexpression of GATA3 in the pulmonary endothelium (jet-PEI plasmid delivery platform) was sufficient to increase Tie2 at baseline and completely block its hypotension-induced acute drop. On the functional level, the Tie2 protection by GATA3 overexpression abrogated the development of pulmonary capillary leakage. CONCLUSIONS The data suggest that the GATA3-Tie2 signaling pathway might play a pivotal role in controlling vascular barrier function and that it is affected in diverse critical illnesses with shock as a consequence of a flow-regulated gene response. Targeting this novel mechanism might offer therapeutic opportunities to treat vascular leakage of diverse etiologies

    CIB1 is a regulator of pathological cardiac hypertrophy

    Get PDF
    Hypertrophic heart disease is a leading health problem facing the Western world. Here we identified the small EF-hand domain-containing protein CIB1 (Ca2+ and integrin binding protein 1) in a screen for novel regulators of cardiomyocyte hypertrophy. Yeast two-hybrid screening for CIB1 interacting partners identified a related EF-hand domain-containing protein calcineurin B, the regulatory subunit of the pro-hypertrophic protein phosphatase calcineurin. CIB1 largely localizes to the sarcolemma in mouse and human myocardium, where it anchors calcineurin to control its activation in coordination with the L-type Ca2+ channel. CIB1 protein levels and membrane association were enhanced in cardiac pathological hypertrophy, but not in physiological hypertrophy. Consistent with these observations, mice lacking Cib1 show a dramatic reduction in myocardial hypertrophy, fibrosis, cardiac dysfunction, and calcineurin-NFAT activity following pressure overload, while the degree of physiologic hypertrophy after swimming was not altered. Transgenic mice with inducible and cardiac-specific overexpression of CIB1 showed enhanced cardiac hypertrophy in response to pressure overload or calcineurin signaling. Moreover, mice lacking the Ppp3cb gene showed no enhancement in cardiac hypertrophy associated with CIB1 overexpression. Thus, CIB1 functions as a novel regulator of cardiac hypertrophy through its ability to regulate calcineurin sarcolemmal association and activation

    Impact of Altered Mineral Metabolism on Pathological Cardiac Remodeling in Elevated Fibroblast Growth Factor 23

    Get PDF
    Clinical and experimental studies indicate a possible link between high serum levels of fibroblast growth factor 23 (FGF23), phosphate, and parathyroid hormone (PTH), deficiency of active vitamin D (1,25D) and klotho with the development of pathological cardiac remodeling, i.e., left ventricular hypertrophy and myocardial fibrosis, but a causal link has not been established so far. Here, we investigated the cardiac phenotype in klotho hypomorphic (kl/kl) mice and Hyp mice, two mouse models of elevated FGF23 levels and klotho deficiency, but differing in parameters of mineral metabolism, by using histology, quantitative real-time PCR, immunoblot analysis, and serum and urine biochemistry. Additionally, the specific impact of calcium, phosphate, PTH, and 1,25D on hypertrophic growth of isolated neonatal rat cardiac myocytes was investigated in vitro. Kl/kl mice displayed high serum Fgf23 levels, increased relative heart weight, enhanced cross-sectional area of individual cardiac myocytes, activated cardiac Fgf23/Fgf receptor (Fgfr) 4/calcineurin/nuclear factor of activated T cell (NFAT) signaling, and induction of pro-hypertrophic NFAT target genes including Rcan1, bMHC, brain natriuretic peptide (BNP), and atrial natriuretic peptide (ANP) as compared to corresponding wild-type (WT) mice. Investigation of fibrosis-related molecules characteristic for pathological cardiac remodeling processes demonstrated ERK1/2 activation and enhanced expression of Tgf-β1, collagen I, and Mmp2 in kl/kl mice than in WT mice. In contrast, despite significantly elevation of serum and cardiac Fgf23, and reduced renal klotho expression, Hyp mice showed no signs of pathological cardiac remodeling. Kl/kl mice showed enhanced serum calcium and phosphate levels, while Hyp mice showed unchanged serum calcium levels, lower serum phosphate, and elevated serum iPTH concentrations compared to corresponding WT mice. In cultured cardiac myocytes, treatment with both calcium or phosphate significantly upregulated endogenous Fgf23 mRNA expression and stimulated hypertrophic cell growth and expression of pro-hypertrophic genes. The treatment with PTH induced hypertrophic cell growth only, and stimulation with 1,25D had no significant effects. In conclusion, our data indicate that Hyp mice, in contrast to kl/kl mice appear to be protected from pathological cardiac remodeling during conditions of high FGF23 levels and klotho deficiency, which may be due, at least in part, to differences in mineral metabolism alterations, i.e., hypophosphatemia and lack of hypercalcemia

    Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease.

    Get PDF
    OBJECTIVE: Congenital heart disease (CHD) is the most frequent birth defect worldwide. The number of adult patients with CHD, now referred to as ACHD, is increasing with improved surgical and treatment interventions. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity, and diabetes, is mostly unknown. METHODS: We used a newly characterized mouse genetic model of ACHD to investigate the consequences and the mechanisms associated with combined obesity and ACHD predisposition. Metformin intervention was used to further evaluate potential therapeutic amelioration of cardiac dysfunction in this model. RESULTS: ACHD mice placed under metabolic stress (high fat diet) displayed decreased left ventricular ejection fraction. Comprehensive physiological, biochemical, and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism with increased glucose dependence as main cardiac energy source. These changes preceded cardiac dysfunction mediated by exposure to high fat diet and were associated with increased disease severity. Restoration of metabolic balance by metformin administration prevented the development of heart dysfunction in ACHD predisposed mice. CONCLUSIONS: This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure. Our study suggests that interactions between genetic and metabolic disturbances ultimately lead to the clinical presentation of heart failure in patients with ACHD. Early manipulation of energy metabolism may be an important avenue for intervention in ACHD patients to prevent or delay onset of heart failure and secondary comorbidities. These interactions raise the prospect for a translational reassessment of ACHD presentation in the clinic

    A NFAT decoy approach to inhibit cardiac hypertrophy

    No full text
    High physical activity is important to optimize the function of adipose tissue. Dysfunctional adipose tissue contributes to the development of metabolic stress, chronic inflammation, and hypertension. To improve our current understanding of the interaction between physical exercise and adipose tissue, we analyzed the effect of 10 months voluntary running wheel activity of rats on uncoupling protein (UCP) 1 negative white adipose tissue (visceral and subcutaneous adipose tissue, VWAT and SWAT). Analysis was performed via RT-PCR and immunoblot from adipose tissues depicted from adult normotensive and spontaneously hypertensive female rats. UCP1 negative VWAT differed from UCP1 positive WAT and brown adipose tissue (BAT) from interscapular fat depots, by lacking the expression of UCP1 and low expression of Cidea, a transcriptional co-activator of UCP1. High physical activity affected the expression of five genes in SWAT (Visfatin (up), RBP5, adiponectin, Cidea, and Nrg4 (all down)) but only one gene (Visfatin, up) in VWAT. Furthermore, the expression of these genes is differentially regulated in VWAT and SWAT of normotensive and spontaneously hypertensive rats (SHR) under sedentary conditions (UCP2) and exercise (Visfatin, Cidea, Nrg4). Keeping the animals after 6 months of voluntary exercise under observation for an additional period of 4 months without running wheels, Visfatin, Cidea, and Nrg4 were stronger expressed in VWAT of SHRs than in sedentary control rats. In summary, our study shows that SWAT is more responsible to exercise than VWAT

    Targeting cardiac hypertrophy through a nuclear co‐repressor

    No full text
    Heart failure entails the inability of the heart to pump blood to vital organs. One of the main risk factors for heart failure is the development of pathological hypertrophy. In this issue of EMBO Molecular Medicine, Li and coworkers show that NCoR1, a co‐repressor of transcription factors, inhibits the transcriptional activity of MEF2 by stabilizing its complex with class II HDACs. By this mechanism, NCoR1 was identified as potent inhibitor of pathological cardiac hypertrophy and dysfunction

    Flow-dependent regulation of endothelial Tie2 by GATA3 in vivo

    No full text
    Background!#!Reduced endothelial Tie2 expression occurs in diverse experimental models of critical illness, and experimental Tie2 suppression is sufficient to increase spontaneous vascular permeability. Looking for a common denominator among different critical illnesses that could drive the same Tie2 suppressive (thereby leak inducing) phenotype, we identified 'circulatory shock' as a shared feature and postulated a flow-dependency of Tie2 gene expression in a GATA3 dependent manner. Here, we analyzed if this mechanism of flow-regulation of gene expression exists in vivo in the absence of inflammation.!##!Results!#!To experimentally mimic a shock-like situation, we developed a murine model of clonidine-induced hypotension by targeting a reduced mean arterial pressure (MAP) of approximately 50% over 4 h. We found that hypotension-induced reduction of flow in the absence of confounding disease factors (i.e., inflammation, injury, among others) is sufficient to suppress GATA3 and Tie2 transcription. Conditional endothelial-specific GATA3 knockdown (B6-Gata3!##!Conclusions!#!The data suggest that the GATA3-Tie2 signaling pathway might play a pivotal role in controlling vascular barrier function and that it is affected in diverse critical illnesses with shock as a consequence of a flow-regulated gene response. Targeting this novel mechanism might offer therapeutic opportunities to treat vascular leakage of diverse etiologies

    Endothelial Cell GATA2 Modulates the Cardiomyocyte Stress Response through the Regulation of Two Long Non-Coding RNAs

    No full text
    Capillary endothelial cells modulate myocardial growth and function during pathological stress, but it is unknown how and whether this contributes to the development of heart failure. We found that the endothelial cell transcription factor GATA2 is downregulated in human failing myocardium. Endothelial GATA2 knock-out (G2-EC-KO) mice develop heart failure and defective myocardial signal transduction during pressure overload, indicating that the GATA2 downregulation is maladaptive. Heart failure and perturbed signaling in G2-EC-KO mice could be induced by strong upregulation of two unknown, endothelial cell-derived long non-coding (lnc) RNAs (AK037972, AK038629, termed here GADLOR1 and 2). Mechanistically, the GADLOR1/2 lncRNAs transfer from endothelial cells to cardiomyocytes, where they block stress-induced signalling. Thereby, lncRNAs can contribute to disease as paracrine effectors of signal transduction and therefore might serve as therapeutic targets in the future
    corecore