330 research outputs found

    Combinatorial synthesis of oxysulfides in the lanthanum-bismuth-copper system

    Get PDF
    Establishing synthesis methods for a target material constitutes a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes

    Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni–La–Co–Ce Oxide Composition Space

    Get PDF
    We report a new family of earth-abundant electrocatalysts for the oxygen evolution reaction (OER) discovered via high-throughput screening of 1771 discrete metal oxide compositions covering the nickel–lanthanum–cobalt–cerium composition space. The catalytic performance of each of these compositions was measured under conditions applicable to distributed solar fuel generation using a three-electrode scanning-drop electrochemical cell. These high-throughput measurements show enhanced activity for catalyst compositions containing 20–65 metal atom % Ce. The catalytic activity and stability of a representative highly active composition (Ni_(0.1)La_(0.1)Co_(0.3)Ce_(0.5))O_x was verified by standard rotating-disc electrochemistry. Catalysts of this composition showed stable operational performance at 10 mA cm^(−2) for 2 h and survived a 100 h endurance test in a testbed electrolyzer

    Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    Get PDF
    Many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce, La, and Fe were prepared by a high throughput inkjet printing technique. The catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. The measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments

    Infrared and X-ray Photoelectron Spectroscopic Studies of the Reactions of Hydrogen-Terminated Crystalline Si(111) and Si(100) Surfaces with Br_2, I_2, and Ferrocenium in Alcohol Solvents

    Get PDF
    The reaction chemistry of H-terminated crystalline Si(111) and Si(100) surfaces in CH_3OH, CD_3OD, CF_3(CH_2)_3OH, C_4H_9OH, and C_4D_9OD solutions containing ferrocenium (Fc^+)−BF_4, I_2, or Br_2 was monitored using X-ray photoelectron (XP) spectroscopy and infrared (IR) spectroscopy. Addition of the one-electron oxidant Fc^+, or addition of the oxidizing species I_2 or Br_2, produced diagnostic changes in the IR spectra that clearly indicated formation of surficial Si−OR groups. XPS data confirmed the conclusions of the IR studies. Under our reaction conditions, no detectable reaction occurred without the presence of the oxidant. The data are consistent with oxidative activation of the surficial Si−H bonds toward nucleophilic attack by the alcohols. The reaction chemistry was generally similar on (111)- and (100)-oriented Si surfaces, although some differences were observed in the ratio of reaction products on the two different surface orientations. Alkoxylated surfaces were also prepared by a two-step process in which the surface was first chlorinated and then reacted with LiOCH_3, LiOCD_3, or LiO(CH_2)_3CF_3. The data indicate that formation of silicon−halogen bonding alone is not sufficient to provide a robust correlation between the electronic and chemical properties of such crystalline Si surfaces and that formation of silicon−alkoxyl bonds is a common motif for surfaces often used in electronic and electrochemical studies of Si

    Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption

    Get PDF
    A high throughput combinatorial synthesis utilizing inkjet printing of precursor inks was used to rapidly evaluate Bi-alloying into double perovskite oxides for enhanced visible light absorption. The fast visual screening of photo image scans of the library plates identifies 4-metal oxide compositions displaying an increase in light absorption, which subsequent UV–vis spectroscopy indicates is due to bandgap reduction. Structural characterization by X-ray diffraction (XRD) and Raman spectroscopy demonstrates that the visually darker composition range contains Bi-alloyed Sm₂MnNiO₆ (double perovskite structure), of the form (Bi,Sm)₂MnNiO₆. Bi alloying not only increases the visible absorption but also facilitates crystallization of this structure at the relatively low annealing temperature of 615 °C. Investigation of additional seven combinations of a rare earth (RE) and a transition metal (TM) with Bi and Mn indicates that Bi-alloying on the RE site occurs with similar effect in the family of rare earth oxide double perovskites

    An Operando Investigation of (Ni-Fe-Co-Ce)O_x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    Get PDF
    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the developing renewable energy field of solar-fuels generation by providing both the protons and electrons needed to generate fuels such as H_2 or reduced hydrocarbons from CO_2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of novel electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts under realistic working regimes, i.e. under operando conditions, is of crucial importance. Here, we study a highly active quinary transition metal oxide-based OER electrocatalyst by means of operando ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe and Co oxy-hydroxides comprising the active catalytic species. While CeO_2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of novel materials

    Balancing Surface Passivation and Catalysis with Integrated BiVO_4/(Fe-Ce)O_x Photoanodes in pH 9 Borate Electrolyte

    Get PDF
    The performance of oxygen-evolving photoanodes based on bismuth vanadate (BiVO_4) is critically determined by the surface coating. While these coatings passivate surface defects, transport photogenerated holes, protect against corrosion, and aid catalysis, their optimal composition changes with operating pH, thus affecting overall performance. We use high-throughput photoelectrochemistry methods to map photoanode performance to enable the discovery of optimal composition and loading of Ce-rich sputter-deposited (Fe–Ce)O_x overlayers on undoped BiVO_4 in pH 9 borate buffer electrolyte. The optimal composition is found to be 20% Fe and 80% Ce with an optimal Fe + Ce metal loading of 0.9 nmol mm^(–2). Analysis of the composition and loading dependence of (i) the photocurrent transients upon illumination toggling, (ii) stabilized photocurrent densities, and (iii) photogenerated hole-transfer efficiency reveals the confluence of phenomena that gives rise to the optimal performance yielding nearly perfect transfer efficiency over a narrow composition window
    • …
    corecore