14 research outputs found

    Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA transfection into dendritic cells (DCs) is widely used to achieve antigen expression as well as to modify DC properties. CD40L is expressed by activated T cells and interacts with CD40 receptors expressed on the surface of the DCs leading to Th1 polarization. Previous studies demonstrated that ectopic CD40L expression via DNA transfection into DCs can activate the CD40 receptor signal transduction cascade. In contrast to previous reports, this study demonstrates that the same effect can be achieved when RNA encoding CD40L is electroporated into DCs as evidenced by secretion of IL-12. To achieve higher levels of IL-12 secretion, a systematic approach involving modification of coding and noncoding regions was implemented to optimize protein expression in the DCs for the purpose of increasing IL-12 secretion.</p> <p>Results</p> <p>Site-directed mutagenesis of each of the first five in-frame methionine codons in the CD40L coding sequence demonstrated that DCs expressing a truncated CD40L protein initiated from the second methionine codon secreted the highest levels of IL-12. In addition, a post-transcriptional method of capping was utilized for final modification of the CD40L RNA. This method enzymatically creates a type I cap structure identical to that found in most eukaryotic mRNAs, in contrast to the type 0 cap incorporated using the conventional co-transcriptional capping reaction.</p> <p>Conclusion</p> <p>The combination of knocking out the first initiation methionine and post-transcriptional capping of the CD40L RNA allowed for approximately a one log increase in IL-12 levels by the transfected DCs. We believe this is a first report describing improved protein expression of post-transcriptionally capped RNA in DCs. The post-transcriptional capping which allows generation of a type I cap may have broad utility for optimization of protein expression from RNA in DCs and other cell types.</p

    Multiplex RT-PCR Amplification of HIV Genes to Create a Completely Autologous DC-Based Immunotherapy for the Treatment of HIV Infection

    Get PDF
    BACKGROUND: Effective therapy for HIV-infected individuals remains an unmet medical need. Promising clinical trials with dendritic cell (DC)-based immunotherapy consisting of autologous DC loaded with autologous virus have been reported, however, these approaches depend on large numbers of HIV virions to generate sufficient doses for even limited treatment regimens. METHODOLOGY/PRINCIPAL FINDINGS: The present study describes a novel approach for RT-PCR amplification of HIV antigens. Previously, RT-PCR amplification of autologous viral sequences has been confounded by the high mutation rate of the virus which results in unreliable primer-template binding. To resolve this problem we developed a multiplex RT-PCR strategy that allows reliable strain-independent amplification of highly polymorphic target antigens from any patient and requires neither viral sequence data nor custom-designed PCR primers for each individual. We demonstrate the application of our RT-PCR process to amplify translationally-competent RNA encoding regions of Gag, Vpr, Rev and Nef. The products amplified using this method represent a complex mixture of autologous antigens encoded by viral quasispecies. We further demonstrate that DCs electroporated with in vitro-transcribed HIV RNAs are capable of stimulating poly-antigen-specific CD8+ T cell responses in vitro. CONCLUSION/SIGNIFICANCE: This study describes a strategy to overcome patient to patient viral diversity enabling strain-independent RT-PCR amplification of RNAs encoding sequence divergent quasispecies of Gag, Vpr, Rev and Nef from small volumes of infectious plasma. The approach allows creation of a completely autologous therapy that does not require advance knowledge of the HIV genomic sequences, does not have yield limitations and has no intact virus in the final product. The simultaneous use of autologous viral antigens and DCs may provoke broad patient-specific immune responses that could potentially induce effective control of viral loads in the absence of conventional antiretroviral drug therapy

    A review of the clinical experience with CMN-001, a tumor RNA loaded dendritic cell immunotherapy for the treatment of metastatic renal cell carcinoma

    No full text
    Engineering dendritic cells (DCs) to treat cancer is a long sought-after goal for cell-based immunotherapies. In this review, we focus on the experience with CMN-001, formally AGS-003, a DC-based immunotherapy, employing autologous DC electroporated with autologous tumor RNA to treat subjects with metastatic renal cell carcinoma (mRCC). We will review the early clinical development of CMN-001 up to and including deployment in a multicenter phase 3 study and provide a rationale to continue the development of CMN-001 in an ongoing randomized phase 2 study. The synergy between CMN-001 and everolimus observed in the phase 3 study provides an opportunity to design a phase 2b study building on the mechanism of action of CMN-001 and underlying immune and clinical outcomes revealed in the earlier studies. The design of the phase 2b study combines CMN-001 with first-line checkpoint inhibition therapy and second line lenvatinib/everolimus in poor-risk mRCC subjects

    A review of the clinical experience with CMN-001, a tumor RNA loaded dendritic cell immunotherapy for the treatment of metastatic renal cell carcinoma

    No full text
    Engineering dendritic cells (DCs) to treat cancer is a long sought-after goal for cell-based immunotherapies. In this review, we focus on the experience with CMN-001, formally AGS-003, a DC-based immunotherapy, employing autologous DC electroporated with autologous tumor RNA to treat subjects with metastatic renal cell carcinoma (mRCC). We will review the early clinical development of CMN-001 up to and including deployment in a multicenter phase 3 study and provide a rationale to continue the development of CMN-001 in an ongoing randomized phase 2 study. The synergy between CMN-001 and everolimus observed in the phase 3 study provides an opportunity to design a phase 2b study building on the mechanism of action of CMN-001 and underlying immune and clinical outcomes revealed in the earlier studies. The design of the phase 2b study combines CMN-001 with first-line checkpoint inhibition therapy and second line lenvatinib/everolimus in poor-risk mRCC subjects.</p

    Capture of HIV quasispesies using the developed multiplex RT-PCR approach.

    No full text
    <p>Phylogenetic relationships of nucleotide sequences of isolated full-length Nef clones (Panel A) and amino acid sequences (Panel B). Horizontal scale indicates the number of nucleotide mutations or amino acid substitutions on each clone relative to neighbor clones.</p

    Successful clade-independent amplification of HIV RNA encoding for antigens from infectious plasma.

    No full text
    <p>Panel A: Agarose gel electrophoresis analysis of PCR fragment obtained from three diverse plasma. Amplification from subject plasma infected with Clade B sample. M: 100 bp DNA ladder (Invitrogen). Panel B: Amplification from subject plasma infected with Clade C virus. M: 100 bp DNA ladder (Invitrogen). Panel C: Amplification from subject plasma infected with Clade AG virus. M: AmpliSize DNA ladder (BioRad). Analysis of products obtained after the secondary PCR reaction for Gag, Vpr, Rev, and Nef as marked on the top. Panel D. cDNA obtained in preparative secondary PCR reaction corresponding to Gag, Vpr, Rev, and Nef antigens. M: 100 bp DNA ladder (Invitrogen). The molecular weight of representative DNA bands is indicated on the left. Panel E. RNA corresponding to Gag, Vpr, Rev, and Nef antigens obtained by <i>in vitro</i> transcription using amplified PCR products from subjects plasma. M: molecular weight RNA ladder (Promega), representative marker sizes are indicated on the left. G, V, R, N: in vitro transcribed RNAs for Gag, Vpr, Nef and Nef respectively.</p

    Panel A: CFSE-low cells expressed as a percentage of total PBMCs.

    No full text
    <p>Mature DCs (CD209: 96%; CD14: 0%; CD80: 100%; CD83: 91%; CD86: 100%; HLA-DR: 96%; and HLA-I: 100%) were electroporated with 4 HIV antigen-encoding RNAs (hatched bar) or eGFP (solid bar) were cultured with CFSE-labeled PBMCs for 6 days. Frequency of CD8+ CFSE-low were cells determined by flow cytometry. Panel B: CD28/CD45RA phenotype of CD8+ cells induced to proliferate (CFSE-low) by DC electroporated with 4 HIV antigen-encoding RNAs (left panel), as compared to the frequency of CD8+ CFSE-low cells induced by eGFP-RNA loaded control DC (right panel), as determined by flow cytometry. Panel C: Frequency of IFN-γ positive cells within the CD8+ CFSE-low subset induced by 4 hr re-stimulation with DC expressing individual HIV antigen-encoding RNAs, or eGFP control RNA, as determined by intracellular staining and flow cytometry. The background response for single HIV RNA stimulators (1ug HIV RNA/10<sup>6</sup> DC) was calculated at 0.38% from GFP RNA-electroporated DC (1ug GFP RNA/10<sup>6</sup> DC) and is indicated by the horizontal dashed line.</p
    corecore