282 research outputs found

    Open mirror symmetry for Pfaffian Calabi-Yau 3-folds

    Full text link
    We investigate the open mirror symmetry of certain non-complete intersection Calabi- Yau 3-folds, so called pfaffian Calabi-Yau. We perform the prediction of the number of disk invariants of several examples by using the direct integration method proposed recently and the open mirror symmetry. We treat several pfaffian Calabi-Yau 3-folds in P6\mathbb{P}^6 and branes with two discrete vacua. Some models have the two special points in its moduli space, around both of which we can consider different A-model mirror partners. We compute disc invariants for both cases. This study is the first application of the open mirror symmetry to the compact non-complete intersections in toric variety.Comment: 64 pages; v2: typos corrected, minor changes, references added; v3: published version, minor corrections and improvement

    Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer's disease

    Get PDF

    The effective action of D6-branes in N=1 type IIA orientifolds

    Full text link
    We use a Kaluza-Klein reduction to compute the low-energy effective action for the massless modes of a spacetime-filling D6-brane wrapped on a special Lagrangian 3-cycle of a type IIA Calabi-Yau orientifold. The modifications to the characteristic data of the N=1 bulk orientifold theory in the presence of a D6-brane are analysed by studying the underlying Type IIA supergravity coupled to the brane worldvolume in the democratic formulation and performing a detailed dualisation procedure. The N=1 chiral coordinates are found to be in agreement with expectations from mirror symmetry. We work out the Kahler potential for the chiral superfields as well as the gauge kinetic functions for the bulk and the brane gauge multiplets including the kinetic mixing between the two. The scalar potential resulting from the dualisation procedure can be formally interpreted in terms of a superpotential. Finally, the gauging of the Peccei-Quinn shift symmetries of the complex structure multiplets reproduces the D-term potential enforcing the calibration condition for special Lagrangian 3-cycles.Comment: 48 pages, v2: typos corrected, references adde

    Remarks on quiver gauge theories from open topological string theory

    Get PDF
    We study effective quiver gauge theories arising from a stack of D3-branes on certain Calabi-Yau singularities. Our point of view is a first principle approach via open topological string theory. This means that we construct the natural A-infinity-structure of open string amplitudes in the associated D-brane category. Then we show that it precisely reproduces the results of the method of brane tilings, without having to resort to any effective field theory computations. In particular, we prove a general and simple formula for effective superpotentials

    Maximal Temperature in Flux Compactifications

    Full text link
    Thermal corrections have an important effect on moduli stabilization leading to the existence of a maximal temperature, beyond which the compact dimensions decompactify. In this note, we discuss generality of our earlier analysis and apply it to the case of flux compactifications. The maximal temperature is again found to be controlled by the supersymmetry breaking scale, T_{crit} \sim \sqrt{m_{3/2} M_P}.Comment: 10 pages, 10 figures. v2:comment and references adde

    Combined BIMA and OVRO observations of comet C/1999 S4 (LINEAR)

    Get PDF
    We present results from an observing campaign of the molecular content of the coma of comet C/1999 S4 (LINEAR) carried out jointly with the millimeter-arrays of the Berkeley-Illinois-Maryland Association (BIMA) and the Owens Valley Radio Observatory (OVRO). Using the BIMA array in autocorrelation (`single-dish') mode, we detected weak HCN J=1-0 emission from comet C/1999 S4 (LINEAR) at 14 +- 4 mK km/s averaged over the 143" beam. The three days over which emission was detected, 2000 July 21.9-24.2, immediately precede the reported full breakup of the nucleus of this comet. During this same period, we find an upper limit for HCN 1-0 of 144 mJy/beam km/s (203 mK km/s) in the 9"x12" synthesized beam of combined observations of BIMA and OVRO in cross-correlation (`imaging') mode. Together with reported values of HCN 1-0 emission in the 28" IRAM 30-meter beam, our data probe the spatial distribution of the HCN emission from radii of 1300 to 19,000 km. Using literature results of HCN excitation in cometary comae, we find that the relative line fluxes in the 12"x9", 28" and 143" beams are consistent with expectations for a nuclear source of HCN and expansion of the volatile gases and evaporating icy grains following a Haser model.Comment: 18 pages, 3 figures. Uses aastex. AJ in pres

    Five-Brane Superpotentials, Blow-Up Geometries and SU(3) Structure Manifolds

    Full text link
    We investigate the dynamics of space-time filling five-branes wrapped on curves in heterotic and orientifold Calabi-Yau compactifications. We first study the leading N=1 scalar potential on the infinite deformation space of the brane-curve around a supersymmetric configuration. The higher order potential is also determined by a brane superpotential which we compute for a subset of light deformations. We argue that these deformations map to new complex structure deformations of a non-Calabi-Yau manifold which is obtained by blowing up the brane-curve into a four-cycle and by replacing the brane by background fluxes. This translates the original brane-bulk system into a unifying geometrical formulation. Using this blow-up geometry we compute the complete set of open-closed Picard-Fuchs differential equations and identify the brane superpotential at special points in the field space for five-branes in toric Calabi-Yau hypersurfaces. This has an interpretation in open mirror symmetry and enables us to list compact disk instanton invariants. As a first step towards promoting the blow-up geometry to a supersymmetric heterotic background we propose a non-Kaehler SU(3) structure and an identification of the three-form flux.Comment: 95 pages, 4 figures; v2: Minor corrections, references update

    Decoupling A and B model in open string theory -- Topological adventures in the world of tadpoles

    Get PDF
    In this paper we analyze the problem of tadpole cancellation in open topological strings. We prove that the inclusion of unorientable worldsheet diagrams guarantees a consistent decoupling of A and B model for open superstring amplitudes at all genera. This is proven by direct microscopic computation in Super Conformal Field Theory. For the B-model we explicitly calculate one loop amplitudes in terms of analytic Ray-Singer torsions of appropriate vector bundles and obtain that the decoupling corresponds to the cancellation of D-brane and orientifold charges. Local tadpole cancellation on the worldsheet then guarantees the decoupling at all loops. The holomorphic anomaly equations for open topological strings at one loop are also obtained and compared with the results of the Quillen formula

    Non-Perturbative Superpotentials in F-theory and String Duality

    Full text link
    We use open-closed string duality between F-theory on K3xK3 and type II strings on CY manifolds without branes to study non-perturbative superpotentials in generalized flux compactifications. On the F-theory side we obtain the full flux potential including D3-instanton contributions and show that it leads to an explicit and simple realization of the three ingredients of the KKLT model for stringy dS vacua. The D3-instanton contribution is highly non-trivial, can be systematically computed including the determinant factors and demonstrates that a particular flux lifts very effectively zero modes on the instanton. On the closed string side, we propose a generalization of the Gukov-Vafa-Witten superpotential for type II strings on generalized CY manifolds, depending on all moduli multiplets.Comment: 49 pages, harvmac, 1 figure; references & figures adde

    Effective superpotentials for compact D5-brane Calabi-Yau geometries

    Full text link
    For compact Calabi-Yau geometries with D5-branes we study N=1 effective superpotentials depending on both open- and closed-string fields. We develop methods to derive the open/closed Picard-Fuchs differential equations, which control D5-brane deformations as well as complex structure deformations of the compact Calabi-Yau space. Their solutions encode the flat open/closed coordinates and the effective superpotential. For two explicit examples of compact D5-brane Calabi-Yau hypersurface geometries we apply our techniques and express the calculated superpotentials in terms of flat open/closed coordinates. By evaluating these superpotentials at their critical points we reproduce the domain wall tensions that have recently appeared in the literature. Finally we extract orbifold disk invariants from the superpotentials, which, up to overall numerical normalizations, correspond to orbifold disk Gromov-Witten invariants in the mirror geometry.Comment: 55 pages; v2: references added, typos correcte
    corecore