386 research outputs found

    Optimal scheduling of peer-to-peer file dissemination

    Get PDF
    Peer-to-peer (P2P) overlay networks such as BitTorrent and Avalanche are increasingly used for disseminating potentially large files from a server to many end users via the Internet. The key idea is to divide the file into many equally-sized parts and then let users download each part (or, for network coding based systems such as Avalanche, linear combinations of the parts) either from the server or from another user who has already downloaded it. However, their performance evaluation has typically been limited to comparing one system relative to another and has typically been realized by means of simulation and measurements. By contrast, we provide an analytic performance analysis that is based on a new uplink-sharing version of the well-known broadcasting problem. Assuming equal upload capacities, we show that the minimal time to disseminate the file is the same as for the simultaneous send/receive version of the broadcasting problem. For general upload capacities, we provide a mixed integer linear program (MILP) solution and a complementary fluid limit solution. We thus provide alower bound which can be used as a performance benchmark for any P2P file dissemination system. We also investigate the performance of a decentralized strategy, providing evidence that the performance of necessarily decentralized P2P file dissemination systems should be close to this bound and, therefore, that it is useful in practic

    Dynamical typicality of quantum expectation values

    Full text link
    We show that the vast majority of all pure states featuring a common expectation value of some generic observable at a given time will yield very similar expectation values of the same observable at any later time. This is meant to apply to Schroedinger type dynamics in high dimensional Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well described by the ensemble average. Our approach is based on the Hilbert space average method. We support the analytical investigations with numerics obtained by exact diagonalization of the full time-dependent Schroedinger equation for some pertinent, abstract Hamiltonian model. Furthermore, we discuss the implications on the applicability of projection operator methods with respect to initial states, as well as on irreversibility in general.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Analysis of peer-to-peer file dissemination

    Get PDF
    In recent years, overlay networks have proven a popular way of disseminating potentially large files from a single server S to a potentially large group of N end users via the Internet. A number of algorithms and protocols have been suggested, implemented and studied. In particular, much attention has been given to peer-to-peer (P2P) systems such as BitTorrent, Slurpie, SplitStream, Bullet and Avalanche. The key idea is that the file is divided into M parts of equal size and that a given user may download any one of these -- or, for Avalanche, linear combinations of these -- either from the server or from a peer who has previously downloaded it. However, performance analysis of P2P systems for file dissemination has typically been limited to comparing one system relative to another and typically been realized by means of simulations and measurements. We give the minimal time to fully disseminate the file of M parts from a server to N end users in a centralized scenario. In the scheduling literature this completion time is referred to as makespan. We thereby provide a lower bound which can be used as a performance benchmark for any P2P file dissemination system. We also investigate the part of the loss in efficiency that is due to the lack of centralized control in practice. Using simulation as well as direct computation, we show that even a simple and natural randomized strategy disseminates the file in an expected time that grows with N in a similar manner to the minimal time achieved with a centralized controller. This suggests that the performance of necessarily decentralized P2P file dissemination systems should still be close to our performance bound

    Global and local relaxation of a spin-chain under exact Schroedinger and master-equation dynamics

    Full text link
    We solve the Schroedinger equation for an interacting spin-chain locally coupled to a quantum environment with a specific degeneracy structure. The reduced dynamics of the whole spin-chain as well as of single spins is analyzed. We show, that the total spin-chain relaxes to a thermal equilibrium state independently of the internal interaction strength. In contrast, the asymptotic states of each individual spin are thermal for weak but non-thermal for stronger spin-spin coupling. The transition between both scenarios is found for couplings of the order of 0.1×ΔE0.1 \times \Delta E, with ΔE\Delta E denoting the Zeeman-splitting. We compare these results with a master equation treatment; when time averaged, both approaches lead to the same asymptotic state and finally with analytical results.Comment: RevTeX, 8 pages, 14 figures, added DOI and forgotten reference
    • …
    corecore