34 research outputs found

    Intriguing electron correlation effects in the photoionization of metallic quantum--dot nanorings

    Full text link
    We report detailed results on ionization in metallic quantum--dot (QD) nanorings described by the extended Hubbard model at half filling obtained by exact numerical diagonalization. In spite of very strong electron correlations, the ionization spectra are astonishingly scarce. We attribute this scarcity to a hidden quasi--symmetry, generalizing thereby similar results on optical absorption recently reported [I. Baldea and L. S. Cederbaum, \prb {\bf 75}, 125323 (2007); {\bf 77}, 165339 (2008)]. Numerical results indicate that this hidden quasi--symmetry of the extended Hubbard model does not evolve into a true (hidden) symmetry but remains a quasi--symmetry in the case of the restricted Hubbard model as well. Based on the observation on the number of significant ionization signals per each spatial symmetry, we claim the existence of a one--to--one map between the relevant ionization signals of the correlated half-filled nanorings and the one-hole and two-hole--one-particle processes possible in the noninteracting case. Similar to the case of optical absorption, numerous avoided crossings (anticrossings) are present in the ionization spectra, which often involve more than two states. The present results demonstrate that ionization could be a useful tool to study electron correlations in metallic QD--nanoarrays, providing information that is complementary to optical absorption

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method

    Euclid preparation. XXVI. The Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF

    Many-body methods for atoms, molecules and clusters

    No full text

    DMFC as Battery-Extender in solar-boat application

    Get PDF
    For special applications Direct Methanol Fuel Cells (DMFC) are close to commercial application or already commercialized today. However for the step from laboratory to a broader market of fuel cells, a significant cost reduction, as well as a lifetime and power density improvement of the systems is needed. The Goals of the BZ-BattExt Project should be reached by applying new knowledge in alternative materials, improved operation strategies and enhanced sub systems. In the project a 100 W DMFC compact system as battery extender was successfully developed and operated. The reduction of the number of components and the simplification of the system led to a high reduction in price, weight and volume. The feasibility of a micro-DMFC system was evaluated which enables a minimised system periphery due to an improved System Architecture. For this, alternative materials and functional components were developed and investigated leading to new membranes with reduced water and methanol permeation allowing a low air stoich operation and higher system efficiency. Gas diffusion layers of various compositions were tested and optimised materials were selected. New sealing materials with good methanol stability and optimized processibility in commercial production Processes were developed and the MEA preparation was adapted to the new materials. The use of a simple, cost-effective way of stack production was demonstrated for DMFC use. Using this new components and materials, coupled with the enhanced subsystem architectures and enhanced operation strategies, the build up and start-up of an improved micro DMFC System was achieved. The technical feasibility of the Results was investigated in the real application. The micro DMFC System was used as a battery range extender in a 6m solar boat. The DMFC fuel cell system serves as a basis for an efficient, compact and cost effective alternative for battery- or battery-extender systems and can fulfil a broad variety of applications

    BZ-BattExt – DMFC as Battery-Extender in solar-boat application

    Get PDF
    For special applications Direct Methanol Fuel Cells (DMFC) are close to commercial application or already commercialized today. However for the step from laboratory to a broader market of fuel cells, a significant cost reduction, as well as an improvement in life time and power density of the systems is needed. These items were the focus of the project BZ-BattExt, to be reached by new knowledge in alternative materials, operation strategies as also the realisation of enhanced sub systems. This project is funded by the German Federal Ministry of Education and Research in the program of Micro fuel cells. In the project the feasibility of a micro-DMFC system is evaluated which enables a minimised system periphery due to an improved system architecture. For this, alternative materials and functional components were developed and investigated. New membranes with reduced water and methanol permeation allow operation at low air stoichiometry and favourable system efficiency. Gas diffusion layers of various compositions were tested and optimised material was selected. New sealing materials with good methanol stability and optimized processibility in commercial production process were developed. MEA preparation was adapted to the new materials. The use of a simple, cost-effective way of stack production was demonstrated for DMFC use. The investigation and construction of enhanced subsystems and operation strategies, which enable and optimise the use of new components and materials, as also the realisation of the micro-DMFC system is a focus of the project. The technical feasibility of the results is investigated in the application, which means it is tested as battery extender of a solar boat. The DMFC fuel cell system serves as a basis for an efficient, compact and cost effective alternative for battery- or battery-extender systems and can fulfil a broad variety of applications

    Finite-temperature second-order many-body perturbation theory revisited

    No full text
    We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn–Luttinger conundrum, does not occur. We comment, in this context, on a “renormalization” scheme recently proposed by Hirata and He

    Fuel Cell System for Solar Boat Battery-Extender - BZ-BattExt -

    Get PDF
    For special applications Direct Methanol Fuel Cells (DMFC) are close to commercial application or already commercialized today. However for the step from laboratory to a broader market of fuel cells, significant cost reduction, as also an improvement in life time and power density of the systems is needed. These items were the focus of the project BZ-BattExt, to be reached by new knowledge in alternative materials, operation strategies as also the realisation of enhanced sub systems. This project is funded by the German Federal Ministry of Education and Research in the program of Micro fuel cells. In the project the feasibility of a micro-DMFC-system is evaluated which enables a minimised system periphery due to an improved system architecture. For this, alternative materials and functional components were developed and investigated. New membranes with reduced water and methanol permeation allow operation at low air stoichiometry, favourable for system efficiency. Gas diffusion layers of various compositions were tested and optimised material selected. New sealing materials with good methanol stability and optimized processibility in commercial production process were developed. MEA preparation was adapted to the new materials. The use of a simple, cost-effective way of stack production was demonstrated for DMFC use. The investigation and construction of enhanced subsystems and operation strategies, which enable and optimise the use of new components and materials, as also the realisation of the micro-DMFC-system is a focus of the project. The technical feasibility of the results is investigated application oriented, which means it is tested as battery extender of a solar boat. The fuel cell system serves as a basis for an efficient, compact and cost effective micro-DMFC-System as alternative for battery- or battery-extender systems which covers a broad variety of applications

    Core Relaxation Effects in Molecular Photoionization

    No full text
    Ionization of K-shell or, more generally, of deep inner-shell electrons in atoms and molecules is accompanied by a considerable rearrangement of the valence (outer-shell) electrons in response to the reduced shielding of the nuclear attraction.(1) This adjustment of the valence electrons, referred to as electronic relaxation, leads to a significant energy lowering of the final ionic state relative to a state where the valence electron distribution of the initial state is maintained (“frozen”). The magnitude of this relaxation energy scales with the number of valence electrons. In the case of the K-shell ionization of second-row atoms (Z = 3−10), for example, the relaxation energies (in eV) are approximately given by Ε ^R(Z) = 3.1 (Z − 2.2). In a molecular environment the corresponding relaxation energies are typically 2−3 eV larger than the values for the free atom. Relaxation not only plays a role in the ionic core but also affects the motion of the outgoing photoelectron. The relaxation of the valence electrons, being essentially a contraction of the valence charge distribution, quite effectively screens the inner-shell hole potential experienced by the photoelectron. This means that the potential of the relaxed ionic core is less attractive than its unrelaxed (frozen) counterpart. As a consequence, resonances in the photoionization cross section will appear at higher energy for a relaxed core than for an unrelaxed (frozen) core. Concomitantly with the shift to higher energy, the resonance peaks will be lowered and broadened as a result of relaxation
    corecore