154 research outputs found

    Nanoplasmonics Meets BIO

    Get PDF

    Contactless and spatially structured cooling by directing thermal radiation

    Get PDF
    In recent years, radiative cooling has become a topic of considerable interest for applications in the context of thermal building management and energy saving. The idea to direct thermal radiation in a controlled way to achieve contactless sample cooling for laboratory applications, however, is scarcely explored. Here, we present an approach to obtain spatially structured radiative cooling. By using an elliptical mirror, we are able to enhance the view factor of radiative heat transfer between a room temperature substrate and a cold temperature landscape by a factor of 92. A temperature pattern and confined thermal gradients with a slope of \~ 0.2~°C/mm are created. The experimental applicability of this spatially structured cooling approach is demonstrated by contactless supercooling of hexadecane in a home-built microfluidic sample. This novel concept for structured cooling yields numerous applications in science and engineering as it provides a means of controlled temperature manipulation with minimal physical disturbance

    Reversible control of current across lipid membranes by local heating

    Get PDF
    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels

    Reversible control of current across lipid membranes by local heating

    Get PDF
    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels

    Photobase effect for just-in-time delivery in photocatalytic hydrogen generation

    Get PDF
    Carbon dots (CDs) are a promising nanomaterial for photocatalytic applications. However, the mechanism of the photocatalytic processes remains the subject of a debate due to the complex internal structure of the CDs, comprising crystalline and molecular units embedded in an amorphous matrix, rendering the analysis of the charge and energy transfer pathways between the constituent parts very challenging. Here we propose that the photobasic effect, that is the abstraction of a proton from water upon excitation by light, facilitates the photoexcited electron transfer to the proton. We show that the controlled inclusion in CDs of a model photobase, acridine, resembling the molecular moieties found in photocatalytically active CDs, strongly increases hydrogen generation. Ultrafast spectroscopy measurements reveal proton transfer within 30ps of the excitation. This way, we use a model system to show that the photobasic effect may be contributing to the photocatalytic H-2 generation of carbon nanomaterials and suggest that it may be tuned to achieve further improvements. The study demonstrates the critical role of the understanding the dynamics of the CDs in the design of next generation photocatalysts

    Twisted light Michelson interferometer for high precision refractive index measurements

    Get PDF
    Using orbital angular momentum beams in a Michelson interferometer opens the possibility for non-invasive measurements of refractive index changes down to 10(-6) refractive index units. We demonstrate the application of a twisted light interferometer to directly measure the concentration of NaCl and glucose solutions label-free and in situ and to monitor temperature differences in the mK-mu K range. From these measurements we can extract a correlation of the refractive index to concentration and to temperature from a liquid sample which is in good agreement with literature. Applying this type of twisted light interferometry yields a novel, robust, and easily implementable method for in situ monitoring of concentration and temperature changes in microfluidic samples. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives

    Get PDF
    This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in optical traps and the temperature profiles around them. We place a particular emphasis on our own work employing optically trapped plasmonic nanoparticles towards nanofabrication, manipulation of biomimetic objects and sensing
    corecore