6 research outputs found

    Quantification of the novel N-methyl-D-aspartate receptor ligand [11C]GMOM in man

    Get PDF
    [11C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N0-(3-[11C]methoxy-phenyl)-N0-methylguanidine) is a PET ligand that binds to the N-methyl-D-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [11C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [11C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [11C]GMOM was observed in regions with high N-methyl-D-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-D-aspartate receptors. This initial study suggests that the [11C]GMOM could be used for quantification of N-methyl-D-aspartate receptors

    COVID-19 vaccination in patients with immune thrombocytopenia

    Get PDF
    Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. Our aims were to investigate the effects of COVID-19 vaccination in ITP patients on platelet count, bleeding complications and ITP exacerbation (any of: ≥50% decline in platelet count; or nadir platelet count 20% decrease from baseline; or use of rescue therapy). Platelet counts of ITP patients and healthy controls were collected immediately before, 1 and 4 weeks after first and second vaccination. Linear mixed-effects modelling was applied to analyze platelet counts over time. We included 218 ITP patients (50.9% female, mean age 55 years and median platelet count of 106x109/L) and 200 healthy controls (60.0% female, mean age 58 years and median platelet count of 256x109/L). Platelet counts decreased by 6.3% after vaccination. We observed no difference in decrease between the groups. Thirty ITP patients (13.8%, 95%CI 9.5%-19.1%) had an exacerbation and 5 (2.2%, 95%CI 0.7%-5.3%) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count <50x109/L (OR 5.3, 95%CI 2.1-13.7), ITP treatment at time of vaccination (OR 3.4, 95%CI 1.5-8.0) and age (OR 0.96 per year, 95%CI 0.94-0.99). Our study highlights safety of COVID-19 vaccination in ITP patients and importance of close monitoring platelet counts in a subgroup of ITP patients. ITP patients with exacerbation responded well on therapy

    COVID-19 vaccination in patients with immune thrombocytopenia

    No full text
    Immune thrombocytopenia (ITP) is an acquired autoimmune disorder that is characterized by low platelet count and increased bleeding risk. COVID-19 vaccination has been described as a risk factor for de novo ITP, but the effects of COVID-19 vaccination in patients with ITP are unknown. We aimed to investigate the effects of COVID-19 vaccination in patients with ITP on platelet count, bleeding complications, and ITP exacerbation (≥50% decline in platelet count, or nadir platelet count 20% decrease from baseline, or use of rescue therapy). Platelet counts in patients with ITP and healthy controls were collected immediately before and 1 and 4 weeks after the first and second vaccinations. Linear mixed-effects modeling was applied to analyze platelet counts over time. We included 218 patients with ITP (50.9% female; mean age, 55 years; and median platelet count, 106 × 109/L) and 200 healthy controls (60.0% female; mean age, 58 years; median platelet count, 256 × 109/L). Platelet counts decreased by 6.3% after vaccination. We did not observe any difference in decrease between the groups. Thirty patients with ITP (13.8%; 95% confidence interval [CI], 9.5-19.1) had an exacerbation and 5 (2.2%; 95% CI, 0.7-5.3) suffered from a bleeding event. Risk factors for ITP exacerbation were platelet count < 50 × 109/L (odds ratio [OR], 5.3; 95% CI, 2.1-13.7), ITP treatment at time of vaccination (OR, 3.4; 95% CI, 1.5-8.0), and age (OR, 0.96 per year; 95% CI, 0.94-0.99). Our study highlights the safety of COVID-19 vaccination in patients with ITP and the importance of the close monitoring of platelet counts in a subgroup of patients with ITP. Patients with ITP with exacerbation responded well on therapy

    CYP3A4*22 Genotype-Guided Dosing of Kinase Inhibitors in Cancer Patients

    Get PDF
    INTRODUCTION: A genetic variant explaining a part of the exposure of many kinase inhibitors (KIs) is the single nucleotide polymorphism (SNP) CYP3A4*22, resulting in less CYP3A4 enzyme activity. The primary aim of this study was to investigate if the systemic exposure is non-inferior after a dose reduction of KIs metabolized by CYP3A4 in CYP3A4*22 carriers compared to patients without this SNP (i.e., wildtype patients) receiving the standard dose. METHODS: In this multicenter, prospective, non-inferiority study, patients were screened for the presence of CYP3A4*22. Patients with the CYP3A4*22 SNP received a 20-33% dose reduction. At steady state, a pharmacokinetic (PK) analysis was performed and compared to the PK results from wildtype patients treated with the registered dose using a two-stage individual patient data meta-analysis approach. RESULTS: In total, 207 patients were included in the final analysis. The CYP3A4*22 SNP was found in 16% of the patients in the final analysis (n = 34). Most of the included patients received imatinib (37%) or pazopanib (22%) treatment. The overall geometric mean ratio (GMR) comparing the exposure of the CYP3A4*22 carriers to the exposure of the wildtype CYP3A4 patients was 0.89 (90% confidence interval: 0.77-1.03). CONCLUSION: Non-inferiority could not be proven for dose reduction of KIs metabolized by CYP3A4 in CYP3A4*22 carriers compared to the registered dose in wildtype patients. Therefore, an up-front dose reduction based upon the CYP3A4*22 SNP for all KIs does not seem an eligible new way of personalized therapy. TRIAL REGISTRATION: International Clinical Trials Registry Platform Search Portal; number NL7514; registered 11/02/2019
    corecore