16 research outputs found

    Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.

    No full text
    Despite its high chemical stability, benzene is known to be biodegradable with various electron acceptors under anaerobic conditions. However, our understanding of the initial activation reaction and the responsible prokaryotes is limited. In the present study, we enriched a bacterial culture that oxidizes benzene to carbon dioxide under sulfate-reducing conditions. Community analysis using terminal restriction fragment length polymorphism, 16S rRNA gene sequencing and FISH revealed 95% dominance of one phylotype that is affiliated to the Gram-positive bacterial genus Pelotomaculum showing that sulfate-reducing Gram-positive bacteria are involved in anaerobic benzene degradation. In order to get indications of the initial activation mechanism, we tested the substrate utilization, performed cometabolism tests and screened for putative metabolites. Phenol, toluene, and benzoate could not be utilized as alternative carbon sources by the benzene-degrading culture. Cometabolic degradation experiments resulted in retarded rates of benzene degradation in the presence of phenol whereas toluene had no effect on benzene metabolism. Phenol, 2-hydroxybenzoate, 4-hydroxybenzoate, and benzoate were identified as putative metabolites in the enrichment culture. However, hydroxylated aromatics were shown to be formed abiotically. Thus, the finding of benzoate as an intermediate compound supports a direct carboxylation of benzene as the initial activation mechanism but additional reactions leading to its formation cannot be excluded definitely

    Metabolites indicate hot spots of biodegradation and biogeochemical gradients in a high-resolution monitoring well.

    No full text
    Anaerobic degradation processes play an important role in contaminated aquifers. To indicate active biodegradation processes signature metabolites can be used. In this study field samples from a high-resolution multilevel well in a tar oil-contaminated, anoxic aquifer were analyzed for metabolites by liquid chromatography-tandem mass spectrometry and time-of-flight mass spectrometry. In addition to already known specific degradation products of toluene, xylenes, and naphthalenes, the seldom reported degradation products benzothiophenemethylsuccinic acid (BTMS), benzofuranmethylsuccinic acid (BFMS), methylnaphthyl-2-methylsuccinic acid (MNMS), and acenaphthene-5-carboxylic acid (AC) could be identified (BFMS, AC) and tentatively identified (BTMS, MNMS). The occurrence of BTMS and BFMS clearly show that the fumarate addition pathway, known for toluene and methylnaphthalene, is also important for the anaerobic degradation of heterocyclic contaminants in aquifers. The molar concentration ratios of metabolites and their related parent compounds differ over a wide range which shows that there is no simple and consistent quantitative relation. However, generally higher ratios were found for the more recalcitrant compounds, which are putatively cometabolically degraded (e.g., 2-carboxybenzothiophene and acenaphthene-5-carboxylic acid), indicating an accumulation of these metabolites. Vertical concentration profiles of benzylsuccinic acid (BS) and methyl-benzylsuccinic acid (MBS) showed distinct peaks at the fringes of the toluene and xylene plume indicating hot spots of biodegradation activity and supporting the plume fringe concept. However, there are some compounds which show a different vertical distribution with the most prominent concentrations where also the precursor compounds peaked
    corecore