3 research outputs found

    Metabolism of endogenous surfactant in premature baboons and effect of prenatal corticosteroids

    Get PDF
    We studied the synthesis of surfactant and the effect of prenatal betamethasone treatment in vivo in very preterm baboons. Ten pregnant baboons were randomized to receive either betamethasone (beta) or saline (control) 48 and 24 h before preterm delivery. The newborn baboons were intubated, treated with surfactant, and ventilated for 6 d. They received a 24-h infusion with the stable isotope [U-(13)C]glucose as precursor for the synthesis of palmitic acid in surfactant phosphatidylcholine (PC). Palmitic acid in surfactant PC became enriched 27 +/- 2 h after the start of the isotope infusion and was maximally enriched at 100 +/- 4 h. The fractional synthesis rate of PC palmitate in the beta group (1.5 +/- 0.2%/d) was increased by 129% above control (0.7 +/- 0.1%/d) (p < 0.02, Mann- Whitney U test). The absolute synthesis rate of PC in the beta group [1.6 +/- 0.3 micromol/kg/d] was increased by 128% above controls [0.7 +/- 0.2 micromol/kg/d] (p < 0.02). These data show that the synthesis of endogenous surfactant from plasma glucose as precursor is a slow process. It is shown, for the first time in vivo, that prenatal glucocorticosteroids stimulate the synthesis of surfactant PC in the very premature baboon

    Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep

    Get PDF
    Rationale: Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure. Methods: Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. Results: LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. Conclusion: Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain
    corecore