2 research outputs found

    Challenges and Opportunities for Engineering Education

    Get PDF
    Abstract While the introduction of Graphic User Interfaces (GUIs) facilitated the interaction of normally sighted users with computers, these benefits are not equally extended to partially sighted individuals that suffer from limited visual acuity. The Lighthouse Inc. has indicated that approximately 8.7 million Americans who are 45 or older report a severe vision impairment that cannot be corrected by wearing eyeglasses or contact lenses. When a computer user has uncorrected visual impairments, the identification and selection of icons in a GUI may become significantly more difficult than for a normally sighted user. This paper describes the development of a platform-independent implementation of "3D Sound Icons". In addition to their graphical representation, each icon in this interface has a characteristic spatial sound (3D-sound), which is perceived by the user according to the spatial relationship between the screen cursor (listener), and the graphical icon (sound source), in the plane of the interface screen. This way, the user can supplement the visual information with spatial auditory information to identify the target icon and navigate towards it. The platform-independent implementation uses Digital Signal Processing functions that are capable of transforming an audio signal lacking spatial characteristics, into audio signals that provide the illusion of a point sound source located in a specific spatial location with respect to the listener. Platform-independence is critical in this application, because it will extend the benefits of the enhanced interface to users of a variety of operating systems (Windows, MacOS, etc.,) and types of computers (desktops, notebooks, palmtops, etc.

    Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia–reperfusion depending on the energetic substrates available

    Get PDF
    AMP-activated protein kinase (AMPK) is a serine–threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic processes in the cell, via phosphorylation of multiple proteins involved in metabolic pathways, aimed to re-establish energy homeostasis at a cell-autonomous level. Myocardial ischemia and reperfusion represents a metabolic stress situation for myocytes. Whether AMPK plays a critical role in the metabolic and functional responses involved in these conditions remains uncertain. In this study, in order to gain a deeper insight into the role of endogenous AMPK activation during myocardial ischemia and reperfusion, we explored the effects of the pharmacological inhibition of AMPK on contractile function rat, contractile reserve, tissue lactate production, tissue ATP content, and cellular viability. For this aim, isolated atria subjected to simulated 75 min ischemia–75 min reperfusion (Is-Rs) in the presence or absence of the pharmacological inhibitor of AMPK (compound C) were used. Since in most clinical situations of ischemia–reperfusion the heart is exposed to high levels of fatty acids, the influence of palmitate present in the incubation medium was also investigated. The present results suggest that AMPK activity significantly increases during Is, remaining activated during Rs. The results support that intrinsic activation of AMPK has functional protective effects in the reperfused atria when glucose is the only available energetic substrate whereas it is deleterious when palmitate is also available. Cellular viability was not affected by either of these conditions.Fil: Hermann, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Mestre Cordero, Victoria Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Fernández Pazos, María de las Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Reznik, Federico Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Vélez, Débora Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Savino, Enrique Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Marina Prendes, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Varela, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentin
    corecore