4 research outputs found

    Exploring associations between gaze patterns and putative human mirror neuron system activity

    Get PDF
    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern

    Behavioural and neural plasticity of ocular motor control: changes in performance and fMRI activity following antisaccade training

    No full text
    The antisaccade task provides a model paradigm that sets the inhibition of a reflexively driven behaviour against the volitional control of a goal-directed behaviour. The stability and adaptability of antisaccade performance was investigated in 23 neurologically healthy individuals. Behaviour and brain function were measured using functional magnetic resonance imaging (fMRI) prior to and immediately following two weeks of daily antisaccade training. Participants performed antisaccade trials faster with no change in directional error rate following two weeks of training; however this increased speed came at the cost of the spatial accuracy of the saccade (gain) which became more hypometric following training. Training on the antisaccade task resulted in increases in fMRI activity in the fronto-basal ganglia-parietal-cerebellar ocular motor network. Following training, antisaccade latency was positively associated with fMRI activity in the frontal and supplementary eye fields, anterior cingulate and intraparietal sulcus; antisaccade gain was negatively associated with fMRI activity in supplementary eye fields, anterior cingulate, intraparietal sulcus and cerebellar vermis. In sum, the results suggest that following training, larger antisaccade latency is associated with larger activity in fronto-parietal-cerebellar ocular motor regions, and smaller antisaccade gain is associated with larger activity in fronto-parietal ocular motor regions

    Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades

    Get PDF
    The antisaccade task is a classic task of oculomotor control that requires participants to inhibit a saccade to a target and instead make a voluntary saccade to the mirror opposite location. By comparison, the prosaccade task requires participants to make a visually-guided saccade to the target. These tasks have been studied extensively using behavioural oculomotor, electrophysiological and neuroimaging in both non-human primates and humans. In humans, the antisaccade task is under active investigation as a potential endophenotype or biomarker for multiple psychiatric and neurological disorders. A large and growing body of literature has used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the neural correlates of the antisaccade and prosaccade tasks. We present a quantitative meta-analysis of all published voxel-wise fMRI and PET studies (18) of the antisaccade task and show that consistent activation for antisaccades and prosaccades is obtained in a fronto-subcortical-parietal network encompassing frontal and supplementary eye fields, thalamus, striatum and intraparietal cortex. This network is strongly linked to oculomotor control and was activated to a greater extent for antisaccade than prosaccade trials. Antisaccade but not prosaccade trials additionally activated dorsolateral and ventrolateral prefrontal cortices. We also found that a number of additional regions not classically linked to oculomotor control were activated to a greater extent for antisaccade versus prosaccade trials; these regions are often reported in antisaccade studies but rarely commented upon. While the number of studies eligible to be included in this meta-analysis was small, the results of this systematic review reveal that antisaccade and prosaccade trials consistently activate a distributed network of regions both within and outside the classic definition of the oculomotor network
    corecore