19 research outputs found

    Endocannabinoid system and anticancer properties of cannabinoids

    Get PDF
    Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2). The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider. CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system. Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects. Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production. Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds

    Virological aspects of non-human primates or swine-to human xenotransplantation

    Get PDF
    There are a number of human diseases, which can lead to organ failure. The consequence is often the need for a transplant. The number of performed operations is very low due to the shortage of organs for transplantation. As a consequence, the number of people waiting for transplant is still growing. The solution to this situation may be xenotransplantation. Xenotransplantation word comes from the Greek xenos meaning stranger, the other. It is defined as any procedure that involves the transplantation, implantation or infusion of tissues or zoonotic organs into a human recipient, but also human body fluids, cells, tissues, organs (or fragments) that have ex vivo contact with zoonotic cells, tissues or organs. One of the obstacles of the xenograft transplantation is the risk of animal pathogens transmission to the humans. Viruses that pose risk in the non-human primates-to-human xenotransplantation includes: the human immunodeficiency virus - HIV and the Marburg virus described in this paper. In addition viruses, which is a problem in pig-to-human xenotransplantation have also been described, including: porcine endogenous retrovirus - PERV, porcine cytomegalovirus - PCMV, porcine lymphotropic herpesvirus - PLHV and hepatitis E virus - E - HEV. This review of literature is the latest knowledge of the microbiological safety of xenotransplantation

    Frequency of 22q11.2 microdeletion in children with congenital heart defects in western poland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 22q11.2 microdeletion syndrome (22q11.2 deletion syndrome -22q11.2DS) refers to congenital abnormalities, including primarily heart defects and facial dysmorphy, thymic hypoplasia, cleft palate and hypocalcaemia. Microdeletion within chromosomal region 22q11.2 constitutes the molecular basis of this syndrome. The 22q11.2 microdeletion syndrome occurs in 1/4000 births. The aim of this study was to determine the frequency of 22q11.2 microdeletion in 87 children suffering from a congenital heart defect (conotruncal or non-conotruncal) coexisting with at least one additional 22q11.2DS feature and to carry out 22q11.2 microdeletion testing of the deleted children's parents. We also attempted to identify the most frequent heart defects in both groups and phenotypic traits of patients with microdeletion to determine selection criteria for at risk patients.</p> <p>Methods</p> <p>The analysis of microdeletions was conducted using fluorescence <it>in situ </it>hybridization (FISH) on metaphase chromosomes and interphase nuclei isolated from venous peripheral blood cultures. A molecular probe (Tuple) specific to the <it>HIRA (TUPLE1, DGCR1</it>) region at 22q11 was used for the hybridisation.</p> <p>Results</p> <p>Microdeletions of 22q11.2 region were detected in 13 children with a congenital heart defect (14.94% of the examined group). Microdeletion of 22q11.2 occurred in 20% and 11.54% of the conotruncal and non-conotruncal groups respectively. Tetralogy of Fallot was the most frequent heart defect in the first group of children with 22q11.2 microdeletion, while ventricular septal defect and atrial septal defect/ventricular septal defect were most frequent in the second group. The microdeletion was also detected in one of the parents of the deleted child (6.25%) without congenital heart defect, but with slight dysmorphism. In the remaining children, 22q11.2 microdeletion originated <it>de novo</it>.</p> <p>Conclusions</p> <p>Patients with 22q11.2DS exhibit wide spectrum of phenotypic characteristics, ranging from discreet to quite strong. The deletion was inherited by one child. Our study suggests that screening for 22q11.2 microdeletion should be performed in children with conotruncal and non-conotruncal heart defects and with at least one typical feature of 22q11.2DS as well as in the deleted children's parents.</p

    Evolution of CRISPR/Cas Systems for Precise Genome Editing

    No full text
    The bacteria-derived CRISPR/Cas (an acronym for regularly interspaced short palindromic repeats/CRISPR-associated protein) system is currently the most widely used, versatile, and convenient tool for genome engineering. CRISPR/Cas-based technologies have been applied to disease modeling, gene therapies, transcriptional modulation, and diagnostics. Nevertheless, some challenges remain, such as the risk of immunological reactions or off-target effects. To overcome these problems, many new methods and CRISPR/Cas-based tools have been developed. In this review, we describe the current classification of CRISPR systems and new precise genome-editing technologies, summarize the latest applications of this technique in several fields of research, and, finally, discuss CRISPR/Cas system limitations, ethical issues, and challenges

    Cannabinoids in Medicine: Cancer, Immunity, and Microbial Diseases

    No full text
    Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs

    Evaluation of the CRISPR/Cas9 Genetic Constructs in Efficient Disruption of Porcine Genes for Xenotransplantation Purposes Along with an Assessment of the Off-Target Mutation Formation

    No full text
    The increasing life expectancy of humans has led to an increase in the number of patients with chronic diseases and organ failure. However, the imbalance between the supply and the demand for human organs is a serious problem in modern transplantology. One of many solutions to overcome this problem is the use of xenotransplantation. The domestic pig (Sus scrofa domestica) is currently considered as the most suitable for human organ procurement. However, there are discrepancies between pigs and humans that lead to the creation of immunological barriers preventing the direct xenograft. The introduction of appropriate modifications to the pig genome to prevent xenograft rejection is crucial in xenotransplantation studies. In this study, porcine GGTA1, CMAH, &beta;4GalNT2, vWF, ASGR1 genes were selected to introduce genetic modifications. The evaluation of three selected gRNAs within each gene was obtained, which enabled the selection of the best site for efficient introduction of changes. Modifications were examined after nucleofection of porcine primary kidney fibroblasts with CRISPR/Cas9 system genetic constructs, followed by the tracking of indels by decomposition (TIDE) analysis. In addition, off-target analysis was carried out for selected best gRNAs using the TIDE tool, which is new in the research conducted so far and shows the utility of this tool in these studies

    In Vitro Evidence of Selective Pro-Apoptotic Action of the Pure Cannabidiol and Cannabidiol-Rich Extract

    No full text
    Plant cannabinoids, secondary metabolites of species belonging to the Cannabis genus, can mimic the endocannabinoids’ action and exert biological effects. Considering the contribution of the endocannabinoid system in cell cycle and apoptotic regulation, there is an interest in exploring the potential anti-cancer activities of natural and synthetic cannabinoids. Cannabidiol (CBD), an abundant plant cannabinoid, reveals a low affinity to cannabinoid receptors and, contrary to various cannabinoids, lacks psychoactive action. Here, we present the in vitro assessment of the pro-apoptototic potential of CBD-rich extracts of Cannabis sativa L. (eCBD) compared to purified CBD (pCBD). As demonstrated, both eCBD and pCBD decreased the viability of breast cancer cell line MDA-MB-231 and human prostate cancer cell line PC-3 in a concentration-dependent fashion. Endoplasmic reticulum stress-related apoptosis and morphological changes were induced only in low-serum conditions. Moreover, the effects of eCDB and pCDB were also assessed in non-malignant cell lines (MCF-10A and PNT2) with no alterations of viability noted, ultimately suggesting a selective action of CBD in tumor cells. The results suggest the possible involvement of reactive oxygen species in the response mechanism to eCBD and pCBD, but no clear pattern was observed. We also demonstrated significant changes in gene expression involved in apoptosis and cell cycle control upon extract treatment. Altogether, our study shows the potential of eCBD and pCBD as novel pro-apoptototic agents that can be considered promising in future preclinical and clinical testing

    Optimisation of the conditions for in vitro regeneration of sage

    No full text
    Szałwia lekarska (Salvia officinalis L.) jest użyteczną rośliną zielarską wykazującą działanie antyseptyczne na szerokie spektrum bakterii, działanie przeciwzapalne, obniżające poziom cukru we krwi, leczące dolegliwości żołądkowe, a nawet mającą działanie antyoksydacyjne. Możliwość zastosowania licznych związków chemicznych zawartych w olejku eterycznym szałwii zwiększa zainteresowanie uprawą tego gatunku z wykorzystaniem metod biotechnologicznych. Opracowanie wydajnych metod regeneracji roślin ważnych z leczniczego punktu widzenia, takich jak szałwia lekarska, otwiera szereg możliwości począwszy od rozpoznania szlaków metabolicznych i zwiększonej produkcji metabolitów wtórnych, po mikropropagację jednorodnych genotypów, aż wreszcie do transformacji genetycznej czy produkcji biofarmaceutyków. Celem niniejszej pracy było opracowanie wydajnej metody regeneracji szałwii lekarskiej w kulturach in vitro na drodze organogenezy bezpośredniej i pośredniej. Organogeneza bezpośrednia była indukowana na pożywce Murashige Skoog (MS) oraz dwukrotnym rozcieńczeniu pożywki MS (1/2 MS) zawierających różne kombinacje i stężenia roślinnych regulatorów wzrostu: BA, mT, NAA oraz IAA. Proces indukcji tkanki kalusowej i próby regeneracji roślin metodą organogenezy pośredniej prowadzone były w trzech różnych doświadczeniach składających się z zestawu odmiennych pożywek. Doświadczenia te obejmowały różne eksplantaty wyjściowe. Najlepsze wyniki dla procesu regeneracji szałwii na drodze organogenezy bezpośredniej uzyskano przy użyciu pożywek MS z dodatkiem 0,3 mg/l BA lub 0,3 mg/l mT. Współczynnik rozmnażania podczas cyklicznej kultury mieścił się w zakresie 3,08–3,82 dla pożywek zawierających BA oraz 2,44–3,41 dla pożywek z mT. W badaniach nad organogenezą pośrednią na wszystkich zastosowanych podłożach otrzymano indukcję kalusa, jednak wzbudzenie właściwości morfogennych tkanki wymaga dalszego dopracowania.Sage (Salvia officinalis L.) is a useful medicinal plant showing antiseptic activity towards a broad spectrum of bacteria, anti-inflammatory activity, lowering blood sugar, treating stomach ailments, and even having an antioxidant effect. The applicability of a number of chemicals present in the essential oil of sage increases the interest in cultivation this species using biotechnological methods. The development of efficient methods for plant regeneration is important for a medicinal plant, such as sage. It opens up a number of possibilities ranging from unravelling of metabolic pathways and increasing the production of secondary metabolites, the micropropagation of homogeneous genotypes, and finally to genetic transformation and production of biopharmaceuticals. The aim of this study was to develop efficient methods for regeneration of sage in in vitro cultures through direct and indirect organogenesis. Direct organogenesis was induced on Murashige Skoog medium (MS) and the half-strength MS medium (1/2 MS) containing different combinations and concentrations of plant growth regulators: BA, mT, NAA and IAA. The callus induction and plant regeneration trials by indirect organogenesis were conducted in three different experiments, consisting of a set of different media. This experiment included various output explants. As a result of the studies efficient regeneration of sage was developed through direct organogenesis using MS media containing 0.3 mg / l BA and 0.3 mg / l mT. Multiplication rate during cyclic culture was in the range of 3.08 - 3.82 for the media containing BA and 2.44–3.41 for the media with mT. In studies on indirect organogenesis we also obtained induction of callus on all the substrates, while the induction of morphogenetic properties of the tissue requires further development

    Application of Genetically Engineered Pigs in Biomedical Research

    No full text
    Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models

    1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090

    No full text
    Compared with chemical synthesis, fermentation has the advantage of mass production at low cost, and has been used in the production of various industrial chemicals. As a valuable organic compound, 1,3-propanediol (1,3-PDO) has numerous applications in the production of polymers, lubricants, cosmetics and medicines. Here, conversion of glycerol (a renewable substrate and waste from biodiesel production) to 1,3-PDO by E. coli bacterial strain carrying altered glycerol metabolic pathway was investigated. Two gene constructs containing the 1,3-PDO operon from Citrobacter freundii (pCF1 and pCF2) were used to transform the bacteria. The pCF1 gene expression construct contained dhaBCE genes encoding the three subunits of glycerol dehydratase, dhaF encoding the large subunit of the glycerol dehydratase reactivation factor and dhaG encoding the small subunit of the glycerol dehydratase reactivating factor. The pCF2 gene expression construct contained the dhaT gene encoding the 1,3-propanediol dehydrogenase. Expression of the genes cloned in the above constructs was under regulation of the T7lac promoter. RT-PCR, SDS-PAGE analyses and functional tests confirmed that 1,3-PDO synthesis pathway genes were expressed at the RNA and protein levels, and worked flawlessly in the heterologous host. In a batch flask culture, in a short time applied just to identify the 1,3-PDO in a preliminary study, the recombinant E. coli bacteria produced 1.53 g/L of 1,3-PDO, using 21.2 g/L of glycerol in 72 h. In the Sartorius Biostat B Plus reactor, they produced 11.7 g/L of 1,3-PDO using 24.2 g/L of glycerol, attaining an efficiency of 0.58 [mol1,3-PDO/molglycerol]
    corecore