7 research outputs found

    Presentation_1_GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex.PPTX

    No full text
    Extrasynaptic GABAA receptors (GABAARs) mediating tonic inhibition are thought to play an important role in the regulation of neuronal excitability. However, little is known about a cell type-specific tonic inhibition in molecularly distinctive types of GABAergic interneurons in the mammalian neocortex. Here, we used whole-cell patch-clamp techniques in brain slices prepared from transgenic mice expressing red fluorescent protein (TdTomato) in vasoactive intestinal polypeptide- or somatostatin- positive interneurons (VIP-INs and SST-INs, respectively) to investigate tonic and phasic GABAAR-mediated inhibition as well as effects of GABAA inhibition on intrinsic excitability of these interneurons in layers 2/3 (L2/3) of the somatosensory (barrel) cortex. We found that tonic inhibition was stronger in VIP-INs compared to SST-INs. Contrary to the literature data, tonic inhibition in SST-INs was comparable to pyramidal (Pyr) neurons. Next, tonic inhibition in both interneuron types was dependent on the activity of delta subunit-containing GABAARs. Finally, the GABAAR activity decreased intrinsic excitability of VIP-INs but not SST-INs. Altogether, our data indicate that GABAAR-mediated inhibition modulates neocortical interneurons in a type-specific manner. In contrast to L2/3 VIP-INs, intrinsic excitability of L2/3 SST-INs is immune to the GABAAR-mediated inhibition.</p

    Genetic ablation of β4 results in larger BK channel currents in CA3 pyramidal neurons.

    No full text
    <p>(A) Fluorescent image of a living slice from a β4−/− knock-out mouse showing GFP-signal in hippocampus. Scale bar: 500 µm. (B) Mean total potassium current from β4 heterozygote (β4+/−) and β4 knock-out (β4−/−) mice. (C) Example paxilline-sensitive BK channel current from representative CA3 neurons in β4+/− and β4−/− mice. (D) Mean amplitude of paxilline-sensitive BK channel current in β4+/− and β4−/− mice.</p

    An ER-retention/retrieval sequence at the C-terminus of β4 inhibits the surface expression of BKα and β4.

    No full text
    <p>(A) Schematic of the mutant β4 constructs showing the C-terminal amino acids. (B) Fluorescence from binding of cell-impermeable dye to cell-surface BKα channels in cells transfected with FAP-BKα (red) and GFP (green). (C) Same as (B) but in cells transfected with FAP-BKα and wild-type β4. (D) Same as (B) but in cells transfected with FAP-BKα and β4-Ala. (E) Same as (B) but in cells transfected with FAP-BKα and β4-polySer. Scale bar = 20 µm (B–E). (F) Mean intensity of surface fluorescence for β4 constructs normalized to fluorescence from cells transfected with FAP-BKα alone. (G) Histogram showing distribution of fluorescence intensity in cells transfected with FAP-BKα alone (red), FAP-BKα+β4-Ala (green) and FAP-BKα+β4-polySer (blue). Scale bar: 20 µm (B–E).</p

    Co-expression of the β4 subunit reduces cell-surface trafficking of BK channels.

    No full text
    <p>(A) Membrane topology of the FAP-BKα and β4 proteins. The FAP tag is at the extracellular, N-terminus. The C-terminus of the BKα subunit is indicated. (B) Schematic of binding of cell-impermeable dye (pink) to the FAP results in significant increase in fluorescence (red). (C) Application of cell-impermeable dye labels only surface BKα channels in live HEK-293 cells co-transfected with FAP-BKα (red) and GFP (green). (D) Same as (C) but in cells co-transfected with β4, FAP-BKα, and GFP showing reduced surface expressed of the FAP-BKα. (E) Application of cell-permeable dye labels intracellular stores of channel in cells transfected with FAP-BKα (red) and GFP (green). (F) Same as (E) but in cells transfected with β4, FAP-BKα, and GFP. Scale bar = 20 µm (C–F). (G) Distribution of surface fluorescence intensity values after application of cell-impermeable dye in transfected cells for FAP-BKα (red bars) or FAP-BKα+β4 (black bars). (H–I) Proposed model for surface distribution of BK channels in the absence (H) or presence (I) of the β4 subunit.</p

    Immunofluorescence reveals that BKα and β4 are substantially localized to the ER and that β4 is difficult to detect on the cell surface.

    No full text
    <p>(A) Immunocytochemistry against fixed, permeabilized HEK-293 cells for the FAP-BKα subunit (anti-BKα: green) and the ER-marker mRFP-KDEL (intrinsic fluorescence; red) in cells transfected with BKα alone. Inset shows a cell with overlapping expression of BKα and mRFP-KDEL with arrows pointing to regions containing only BKα. (B) Quantitation of normalized intensity versus normalized distance from the cell nucleus for anti-BKα (green) and mRFP (red) in transfected cells. (C) As in (A) but for cells expressing BKα (green), β4 (unlabeled; not visualized) and mRFP-KDEL (red). (D) Same as (B) but in cells expressing BKα, β4 and mRFP-KDEL. (E) Localization of the β4 subunit (anti-β4: green) and mRFP- KDEL (intrinsic fluorescence; red) in cells expressing BKα (unlabeled; not visualized), β4 and mRFP-KDEL. Scale bar = 20 µm or 5 µm for inset. (F) As in (B), but for β4 and mRFP-KDEL. (G) Localization of the β4 subunit (anti-β4: green), mRFP-KDEL (intrinsic fluorescence; red) and BKα (anti-α: blue) in transfected, fixed HEK-293 cells expressing BKα, β4, and mRFP-KDEL. (H) Expression pattern of the β4 subunit (anti-β4: green) and mRFP- KDEL (intrinsic fluorescence; red) under non-permeabilized immunohistochemistry conditions. Note that immunohistochemical detection of cell-surface BKα is difficult because of an intracellular epitope for BKα. Scale bar = 10 µm (G,H).</p

    β4-containing BK channels do not contribute to whole-cell BK channel currents.

    No full text
    <p>(A) In situ hybridization showing regions of β4 expression in a mouse brain. Arrow points to high levels of expression in the CA3. (B) Hippocampal area CA3 shows robust β4 expression. Scale bar = 200 µm. (C) Bright field image showing a whole cell electrode in the CA3. Scale bar = 500 µm. (D) Fluorescent image of a CA3 pyramidal cell filled with Alexa fluor 568 after whole cell patch clamp recording. Scale bar = 50 µm. (E) Overlaid traces from a representative cell showing total potassium current and the residual potassium current after application of a BK channel blocker. (F) Schematic overlap between paxilline- and iberiotoxin-sensitive currents when β4-containing BK channels contribute to whole-cell current. (G) Schematic overlap between paxilline- and iberiotoxin-sensitive currents when β4 containing BK channels do not contribute to whole-cell current. (H) Example paxilline-sensitive BK channel current from a representative cell. (I) Example iberiotoxin-sensitive BK channel current from a representative cell. (J) Quantitation of mean paxilline (pax)- and iberiotoxin (ibtx)-sensitive currents from CA3 pyramidal cells.</p

    Mutation of the C-terminal ER-retention/retrieval sequence in β4 liberates β4 to the surface.

    No full text
    <p>(A) Expression pattern of the cotransfected FAP-BKα (unlabeled; not visualized), β4-Ala mutant (anti-β4 immunocytochemistry: green) and mRFP- KDEL (intrinsic fluorescence; red) in fixed, permeabilized HEK-293 cells. (B) Same as (A) but under non-permeabilized conditions. (C) Same as for (A) but for β4-polySer mutant under permeabilized conditions. (D) Same as (C) but under non-permeabilized conditions. Scale bar = 10 µm (A–D).</p
    corecore