10 research outputs found

    miRNA in head and neck squamous cell carcinomas: promising but still distant future of personalized oncology

    Get PDF
    Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) — molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients’ needs

    Angiotensin-converting enzyme inhibitors for ovarian cancer? — a new adjuvant option or a silent trap

    Get PDF
    Background: Ovarian cancer is a huge therapeutic and financial problem for which approved treatments have already achieved their limit of efficiency. A cost-effective strategy to extend therapeutic options in this malignancy is drug repurposing aimed at overcoming chemoresistance. Here, angiotensin-converting enzyme inhibitors (ACE-I) are worth considering. Material and methods: We searched literature for publications supporting the idea of adjuvant application of ACE-Is in ovarian malignancy. Then, we searched The Cancer Genome Atlas databases for relevant alternations of gene expression patterns. We also performed in silico structure-activity relationship evaluation for predicting ACE-Is’ cytotoxicity against ovarian cancer cell lines. Finally, we reviewed the potential obstacles in ACE-Is repurposing process. Results: The alternation of angiotensin receptor expression in ovarian cancer translates into poorer patient survival. This confirms the participation of the renin-angiotensin system in ovarian carcinogenesis. In observational studies, ACE-Is were shown synergize with both, platinum-based chemotherapy as well as with antiangiogenic therapy. Consistently, our in silico simulation showed that ACE-Is are probably cytotoxic against ovarian cancer cells. However, the publications on their chemopreventive properties were inconclusive. In addition, some reports correlated ACE-Is use with increased general cancer incidence. We hypothesized that this effect could be associated with mutagenic nitrosamine formation in ACE-Is’ pharmaceutical formulations, as was the case with angiotensin receptor blockers (ARBs) and other well-established pharmaceuticals. Conclusions: Available data warrant further research into repositioning ACE-Is to ovarian cancer as chemosensitizers. Prior to this, however, a special research program is needed to detect possible genotoxic contaminants of ACE-Is

    Midsize noncoding RNAs in cancers: a new division that clarifies the world of noncoding RNA or an unnecessary chaos?

    Get PDF
    Most of the human genome is made out of noncoding RNAs (ncRNAs). These ncRNAs do not code for proteins but carry a vast number of important functions in human cells such as: modification and processing other RNAs (tRNAs, rRNAs, snRNAs, snoRNAs, miRNAs), help in the synthesis of ribosome proteins, initiation of DNA replication, regulation of transcription, processing of pre-messenger mRNA during its maturation and much more. The ncRNAs also have a significant impact on many events that occur during carcinogenesis in cancer cells, such as: regulation of cell survival, cellular signaling, apoptosis, proliferation or even influencing the metastasis process. The ncRNAs may be divided based on their length, into short and long, where 200 nucleotides is the “magic” border. However, a new division was proposed, suggesting the creation of the additional group called midsize noncoding RNAs, with the length ranging from 50–400 nucleotides. This new group may include: transfer RNA (tRNA), small nuclear RNAs (snRNAs) with 7SK and 7SL, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) and YRNAs. In this review their structure, biogenesis, function and influence on carcinogenesis process will be evaluated. What is more, a question will be answered of whether this new division is a necessity that clears current knowledge or just creates an additional misunderstanding in the ncRNA world

    Biological role and diagnostic utility of ribosomal protein L23a pseudogene 53 in cutaneous melanoma

    Get PDF
    Background: Skin melanoma is one of the deadliest types of skin cancer and develops from melanocytes. The genetic aberrations in protein-coding genes are well characterized, but little is known about changes in non-coding RNAs (ncRNAs) such as pseudogenes. Ribosomal protein pseudogenes (RPPs) have been described as the largest group of pseudogenes which are dispersed in the human genome. Materials and methids: We looked deeply at the role of one of them, ribosomal protein L23a pseudogene 53 (RPL23AP53), and its potential diagnostic use. The expression level of RPL23AP53 was profiled in melanoma cell lines using qRT-PCR and analyzed based on the Cancer Genome Atlas (TCGA) data depending on BRAF status and clinicopathological parameters. Cellular phenotype, which was associated with RPL23AP53 levels, was described based on the REACTOME pathway browser, Gene Set Enrichment Analysis (GSEA) analysis as well as Immune and ESTIMATE Scores. Results: We indicted in vitro changes in RPL23AP53 level depending on a cell line, and based on in silico analysis of TCGA samples demonstrated significant differences in RPL23AP53 expression between primary and metastatic melanoma, as well as correlation between  RPL23AP53 and overall survival. No differences depending on BRAF status were observed. RPL23AP53 is associated with several signaling pathways and cellular processes. Conclusions: This study showed that patients with higher expression of RPL23AP53 displayed changed infiltration of lymphocytes, macrophages, and neutrophils compared to groups with lower expression of RPL23AP53. RPL23AP53 pseudogene is differently expressed in melanoma compared with normal tissue and its expression is associated with cellular proliferation. Thus, it may be considered as an indicator of patients' survival and a marker for the immune profile assessment

    Host gene and its guest: short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31

    Get PDF
    Epigenetics is the changes in a cellular phenotype without changes in the genotype. This term is not limited only to the modification of chromatin and DNA but also relates to some RNAs, like non-coding RNAs (ncRNAs), both short and long RNAs (lncRNAs) acting as molecular modifiers. Mobile RNAs, as a free form or encapsulated in exosomes, can regulate neighboring cells or be placed in distant locations. It underlines the vast capacity of ncRNAs as epigenetic elements of transmission information and message of life. One of the amazing phenomena is long non-coding microRNA-host-genes (lnc-MIRHGs) whose processed transcripts function as lncRNAs and also as short RNAs named microRNAs (miRNAs). MIR31HG functions as a modulator of important biological and cellular processes including cell proliferation, apoptosis, cell cycle regulation, EMT process, metastasis, angiogenesis, hypoxia, senescence, and inflammation. However, in most cases, the role of MIR31HG is documented only by one study and there is a lack of exact description of molecular pathways implicated in these processes, and for some of them, such as response to irradiation, no studies have been done. In this review, MIR31HG, as an example of lnc-MIRHGs, was described in the context of its known function and its potential uses as a biomarker in oncology

    Radio-lncRNAs: Biological Function and Potential Use as Biomarkers for Personalized Oncology

    No full text
    Long non-coding RNAs (lncRNAs) consist of at least 200 nucleotides. Although these molecules do not code proteins, they carry many regulatory functions in normal cells, as well as in cancer cells. For instance, many of these molecules have been previously correlated with tumorigenesis of different cancers and their reaction to various stress factors, such as radiotherapy, chemotherapy, or reactive oxygen species (ROS). The lncRNAs are associated not only with dysregulation in cancers after applied treatment but also with beneficial effects that may be achieved by modulating their expression, often significantly enhancing the patients’ outcomes. A multitude of these molecules was previously considered as potential biomarkers of tumor development, progression, or cells’ response to radio- or chemotherapy. Irradiation, which is often used in treating numerous cancer types, is not always sufficient due to cells gaining resistance in multiple ways. In this review, studies considering lncRNAs and their reaction to radiotherapy were examined. These molecules were divided regarding their role in specific processes strictly related to irradiation, and their influence on this type of treatment was explained, showing how vast an impact they have on IR-supported combat with the disease. This review aims to shed some light on potential future lncRNA-based biomarkers and therapeutic targets

    Zinc Finger Proteins in Head and Neck Squamous Cell Carcinomas: ZNF540 May Serve as a Biomarker

    No full text
    Head and neck squamous cell carcinoma (HNSCC) is one of the ten most common cancers. Most cancer cases originate from alcohol and tobacco consumption. However, studies have demonstrated that human papillomavirus (HPV) infection, particularly HPV-16, may also significantly influence disease progression. The KRAB-ZNF family of genes is involved in epigenetic suppression, and its involvement in carcinogenesis is the subject of extensive studies. The available literature data demonstrate that they may play different roles, both as tumor suppressors and oncogenes. In this study, six ZNF genes, ZFP28, ZNF132, ZNF418, ZNF426, ZNF540, and ZNF880, were tested using several in silico approaches based on the TCGA and GEO datasets. Our analyses indicate that the expression of the analyzed ZNFs was significantly downregulated in tumor tissues and depended on tumor localization. The expression levels of ZNFs differed between HPV-positive vs. HPV-negative patients depending on the clinical-pathological parameters. More specifically, the patients with higher levels of ZNF418 and ZNF540 showed better survival rates than those with a lower expression. In addition, the level of ZNF540 expression in HPV-positive (HPV(+)) patients was higher than in HPV-negative (HPV(−)) patients (p < 0.0001) and was associated with better overall survival (OS). In conclusion, we demonstrate that ZNF540 expression highly correlates with HPV infection, which renders ZNF540 a potential biomarker for HNSCC prognosis and treatment

    The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules?

    No full text
    Pseudogenes were once considered as “junk DNA”, due to loss of their functions as a result of the accumulation of mutations, such as frameshift and presence of premature stop-codons and relocation of genes to inactive heterochromatin regions of the genome. Pseudogenes are divided into two large groups, processed and unprocessed, according to their primary structure and origin. Only 10% of all pseudogenes are transcribed into RNAs and participate in the regulation of parental gene expression at both transcriptional and translational levels through senseRNA (sRNA) and antisense RNA (asRNA). In this review, about 150 pseudogenes in the different types of cancers were analyzed. Part of these pseudogenes seem to be useful in molecular diagnostics and can be detected in various types of biological material including tissue as well as biological fluids (liquid biopsy) using different detection methods. The number of pseudogenes, as well as their function in the human genome, is still unknown. However, thanks to the development of various technologies and bioinformatic tools, it was revealed so far that pseudogenes are involved in the development and progression of certain diseases, especially in cancer

    miR-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker

    No full text
    MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment

    C10orf55, CASC2, and SFTA1P lncRNAs Are Potential Biomarkers to Assess Radiation Therapy Response in Head and Neck Cancers

    No full text
    Long non-coding RNAs have proven to be important molecules in carcinogenesis. Due to little knowledge about them, the molecular mechanisms of tumorigenesis are still being explored. The aim of this work was to study the effect of ionizing radiation on the expression of lncRNAs in head and neck squamous cell carcinoma (HNSCC) in patients responding and non-responding to radiotherapy. The experimental model was created using a group of patients with response (RG, n = 75) and no response (NRG, n = 75) to radiotherapy based on the cancer genome atlas (TCGA) data. Using the in silico model, statistically significant lncRNAs were defined and further validated on six HNSCC cell lines irradiated at three different doses. Based on the TCGA model, C10orf55, C3orf35, C5orf38, CASC2, MEG3, MYCNOS, SFTA1P, SNHG3, and TMEM105, with the altered expression between the RG and NRG were observed. Analysis of pathways and immune profile indicated that these lncRNAs were associated with changes in processes, such as epithelial-to-mesenchymal transition, regulation of spindle division, and the p53 pathway, and differences in immune cells score and lymphocyte infiltration signature score. However, only C10orf55, CASC2, and SFTA1P presented statistically altered expression after irradiation in the in vitro model. In conclusion, the expression of lncRNAs is affected by ionization radiation in HNSCC, and these lncRNAs are associated with pathways, which are important for radiation response and immune response. Potentially presented lncRNAs could be used as biomarkers for personalized radiotherapy in the future. However, these results need to be verified based on an in vitro experimental model to show a direct net of interactions
    corecore