9 research outputs found

    The Effect of α-Tocopherol on the Reduction of Inflammatory Processes and the Negative Effect of Acrylamide

    No full text
    Our research aimed to show acrylamide’s influence on inflammatory processes, the oxidative stress it causes in the cholinergic system, and the possibility of reducing inflammation via supplementation with α-tocopherol. For this purpose, an in ovo model was used where the embryos were exposed to acrylamide, α-tocopherol and a cocktail of these substances. After 48 h of exposure, we collected brain samples and performed biochemical assays to examine the effect of the chosen substances on oxidative stress (malondialdehyde-MDA and reduced glutathione-GSH) and acetylcholinesterase activity (AChE). The results showed that acrylamide decreased AChE activity in the examined brain samples by about 25% in comparison to the control group, and this effect was decreased by administering α-tocopherol. The concentration of malondialdehyde significantly increased in the group given acrylamide, while, in the group with α-tocopherol, the observed concentration was lower in comparison to the control group. Moreover, a decrease in glutathione concentration was observed after the administration of acrylamide; however, the protective effect of α-tocopherol was only slightly visible in this case. In conclusion, α-tocopherol minimizes the harmful effects of acrylamide on AchE, and it can minimize the concentration of MDA

    Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body

    No full text
    Introduction and purpose of the study: SARS-CoV-2 virus does not only affect the respiratory system. It may cause damage to many organ systems with long-term effects. The latest scientific reports inform that this virus leaves a long-term trace in the nervous, circulatory, respiratory, urinary and reproductive systems. It manifests itself in disturbances in the functioning of the organs of these systems, causing serious health problems. The aim of the study was to review the latest research into the long-term effects of COVID-19 and determine how common these symptoms are and who is most at risk. Based on a literature review using the electronic scientific databases of PubMed and Web of Science on the long-term effects of SARS-CoV-2 infection, 88 studies were included in the analysis. The information contained in the analyzed literature shows that the SARS-CoV-2 virus can cause multi-organ damage, causing a number of long-term negative health complications. Conclusions: There is evidence that the virus can cause long-term complications lasting more than six months. They mainly concern disturbances in the functioning of the nervous, circulatory and respiratory systems. However, these studies are small or short-lasting, and many are speculative

    Assessment of the functioning of crop and livestock insurance in Polish agriculture

    No full text
    The study reviews and assesses functioning of subsidized crop and livestock insurance as regards the level of their use and determination of factors motivating and demotivating to conclude insurance contracts by farmers. Chapters: Risk and traditional agricultural insurance – theoretical foundations. Subsidizing agricultural insurance. Evolution of national legal provisions regarding crop and livestock insurance in 1952-2016. Assessment of the functioning of crop and livestock insurance in Poland. Income and financial situation of farms using crop and livestock insurance. Determinants of the demand for crop insurance – model approach. Impact of the purchase of insurance on selected characteristics of family farms. Viability of the purchase of crop insurance by the farm’s operator. Determinants of the demand for crop insurance, factors motivating to purchase such insurance and factors discouraging from this – results of empirical studies

    The Use of Quantitative Electroencephalography (QEEG) to Assess Post-COVID-19 Concentration Disorders in Professional Pilots: An Initial Concept

    No full text
    Announced by WHO in 2020, the global COVID-19 pandemic caused by SARS-CoV-2 has affected many people, leading to serious health consequences. These consequences are observed in the daily lives of infected patients as various dysfunctions and limitations. More and more people are suffering post-COVID-19 complications that interfere with or completely prevent them from working or even functioning independently on a daily basis. The aim of our study was to demonstrate that innovative quantitative electroencephalography (QEEG) can be used to assess cognitive function disorders reported after the COVID-19 pandemic. It is worth noting that no similar study has been conducted to date in a group of pilots. The QEEG method we used is currently one of the basic neurological examinations, enabling easy observation of post-COVID-19 changes in the nervous system. With the innovativeness of this technique, our study shows that the use of quantitative electroencephalography can be a precursor in identifying complications associated with cognitive function disorders after COVID-19. Our study was conducted on twelve 26-year-old pilots. All participants had attended the same flight academy and had contracted SARS-CoV-2 infection. The pilots began to suspect COVID-19 infection when they developed typical symptoms such as loss of smell and taste, respiratory problems, and rapid fatigue. Quantitative electroencephalography (QEEG), which is one of the most innovative forms of diagnostics, was used to diagnose the patients. Comparison of the results between the study and control groups showed significantly higher values of all measurements of alpha, theta, and beta2 waves in the study group. In the case of the sensorimotor rhythm (SMR), the measurement results were significantly higher in the control group compared to the study group. Our study, conducted on pilots who had recovered from COVID-19, showed changes in the amplitudes of brain waves associated with relaxation and concentration. The results confirmed the issues reported by pilots as evidenced by the increased amplitudes of alfa, theta, and beta2 waves. It should be emphasized that the modern diagnostic method (QEEG) presented here has significant importance in the medical diagnosis of various symptoms and observation of treatment effects in individuals who have contracted the SARS-CoV-2 virus. The present study demonstrated an innovative approach to the diagnosis of neurological complications after COVID-19

    MiRNA expression in the cartilage of patients with osteoarthritis

    No full text
    Abstract Background Osteoarthritis (OA), the most prevalent disease of articulating joints, is a complex multifactorial disease caused by genetic, mechanical, and environmental factors. In this research, we evaluated miRNA expression in OA. Methods Forty tissue samples from 29 patients undergoing joint replacement for OA were evaluated. Tissue from two control patients undergoing hip replacement not related to OA was used as a control. Total RNA (containing miRNA species) from cartilage was isolated using a mirVana miRNA Isolation Kit. Expression of 19 miRNAs was assessed by real-time quantitative polymerase chain reaction. Results Expression of four miRNAs, miR-138-5p, miR-146a-5p, miR-335-5p, and miR-9-5p, was significantly upregulated in OA tissues (patients vs. control group). Conclusions These findings may contribute to disease prevention and the development of therapeutic targets for OA
    corecore