20 research outputs found

    Assessment of S100 protein expression in the epididymis of juvenile and adult European bison.

    Get PDF
    In our study, we decided to compare S100 protein expression in the material obtained from the epididymes of 5- and 12-month-old calves, and adult European bison, and to detect any differences in S100 expression according to the animal age and size of the organ examined. We used the epididymes obtained from 6 adult European bison aged 6-12 years, from 6 at the age of 12 months and 6 calves aged 5 months. Immunocytochemical reactions were performed using the avidin-biotinylated-peroxidase (ABC) technique according to HSU. Specific polyclonal rabbit antiserum against bovine S100 protein (Bio Genex Laboratories) at a dilution at 1:400 was applied. We found the expression of S100 protein in endothelial cells of arteries, veins and lymphatic vessels in all the study animals. At the same time, we found no differences in the expression of S100 protein in vascular endothelial cells. Our observations seem to indicate that S100 expression in endothelial cells of European bison epididymis is not correlated with age or maturity of the organ tested. We found S100 protein in smooth muscle cells of arteries and veins in all European bison specimens examined. Interestingly in the current study, in young 5-month-old sexually immature European bison specimens we observed weaker expression of S100 protein in smooth muscle cells of small vessels as compared to the same cell type both in large vessels in these animals and in small vessels in adult specimens

    (Bio)degradable polymeric materials for sustainable future—Part 3: Degradation studies of the PHA/wood flour-based composites and preliminary tests of antimicrobial activity

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/ma13092200The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.Published onlin

    Plasmidome of an environmental Acinetobacter lwoffii strain originating from a former gold and arsenic mine

    Get PDF
    Emerging important Acinetobacter strains commonly accommodate a plethora of mobile elements including plasmids of different size. Plasmids, apart from encoding modules enabling their self-replication and/or transmission, can carry a diverse number of genes, allowing the host cell to survive in an environment that would otherwise be lethal or restrictive for growth. The present study characterizes the plasmidome generated from an arsenic-resistant strain named ZS207, classified as Acinetobacter lwoffii . Sequencing effort revealed the presence of nine plasmids in the size between 4.3 and 38.4 kb as well as one 186.6 kb megaplasmid. All plasmids, except the megaplasmid, do apparently not confer distinguishing phenotypic features . In contrast, the megaplasmid carries arsenic and heavy metals resistance regions similar to those found in permafrost A. lwoffii strains. In-depth in silico analyses have shown a significant similarity between the regions from these plasmids, especially concerning multiple transposable elements, transfer and mobilization genes, and toxin-antitoxin systems. Since ars genes encode proteins of major significance in terms of potential use in bioremediation, arsenic resistance level of ZS207 was determined and the functionality of selected ars genes was examined . Additionally, we checked the functionality of plasmid-encoded toxin-antitoxin systems and their impact on the formation of persister cells

    Slow Adaptive Response of Budding Yeast Cells to Stable Conditions of Continuous Culture Can Occur without Genome Modifications

    Get PDF
    Continuous cultures assure the invariability of environmental conditions and the metabolic state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients availability. For that reason, continuous culture is sometimes employed in the whole transcriptome, whole proteome, or whole metabolome studies. However, the typical method for establishing uniform growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs, but not as a result of the accumulation of adaptive mutations. The observed changes indicate a shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful environment. The absence of underlying adaptive mutations suggests these changes may be regulated by another mechanism

    Improvement of native structure-based peptides as efficient inhibitors of protein-protein interactions of SARS-CoV-2 spike protein and human ACE2

    Get PDF
    New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections

    An Apoptotic and Endosymbiotic Explanation of the Warburg and the Inverse Warburg Hypotheses

    Get PDF
    Otto Warburg, a Nobel prize winner, observed that cancer cells typically “switch” from aerobic to anaerobic respiration. He hypothesized that mitochondrial damage induces neoplastic transformation. In contrast, pathological aging is observed mainly in neuron cells in neurodegenerative diseases. Oxidative respiration is particularly active in neurons. There is inverse comorbidity between cancer and neurodegenerative diseases. This led to the creation of the “inverse Warburg hypothesis”, according to which excessive mitochondrial activity induces pathological aging. The findings of our studies suggest that both the Warburg effect and the “inverse Warburg hypothesis” can be elucidated by the activation or suppression of apoptosis through oxidative respiration. The key outcome of our phylogenetic studies was the discovery that apoptosis and apoptosis-like cell death evolved due to an evolutionary “arms race” conducted between “prey” protomitochondrion and “predator” primitive eukaryotes. The ancestral protomitochondrial machinery produces and releases toxic mitochondrial proteins. Extant apoptotic factors evolved from these toxins. Our experiments indicate that the mitochondrial machinery is directly involved in adaptation to aerobic conditions. Additionally, our hypothesis is supported by the fact that different apoptotic factors are directly involved in respiration

    Loss-of-function mutations are main drivers of adaptations during short-term evolution

    Get PDF
    We noticed that during short-term experimental evolution and carcinogenesis, mutations causing gene inactivation (i.e., nonsense mutations or frameshifts) are frequent. Our meta-analysis of 65 experiments using modified dN/dS statistics indicated that nonsense mutations are adaptive in different experimental conditions and we empirically confirmed this prediction. Using yeast S. cerevisiae as a model we show that fixed or highly frequent gene loss-of-function mutations are almost exclusively adaptive in the majority of experiments
    corecore