1 research outputs found
High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes
The exquisite selectivity and unique transport properties
of membrane
proteins can be harnessed for a variety of engineering and biomedical
applications if suitable membranes can be produced. Amphiphilic block
copolymers (BCPs), developed as stable lipid analogs, form membranes
that functionally incorporate membrane proteins and are ideal for
such applications. While high protein density and planar membrane
morphology are most desirable, BCP–membrane protein aggregates
have so far been limited to low protein densities in either vesicular
or bilayer morphologies. Here, we used dialysis to reproducibly form
planar and vesicular BCP membranes with a high density of reconstituted
aquaporin-0 (AQP0) water channels. We show that AQP0 retains its biological
activity when incorporated at high density in BCP membranes, and that
the morphology of the BCP–protein aggregates can be controlled
by adjusting the amount of incorporated AQP0. We also show that BCPs
can be used to form two-dimensional crystals of AQP0