202 research outputs found

    The Shift from Centralized to Peer-to-Peer Communication in an Online Community: Participants as a Useful Aspect of Genre Analysis

    Get PDF
    In this paper we analyzed an online community based on a mailing list that was created as an internal marketing tool for launching a new network service. We focused on the change in communication over time among dispersed Sales representatives and the employees in a centralized Service Department. We conducted a genre analysis based on content (what), purpose (why), timing (when), form (how) and participants (who communicates to whom) (Yates and Orlikowski, 2002). Analyzing the participants in a genre and how those participants changed over time highlighted a shift from centralized to dispersed, peer-to-peer communication in this community. We highlight implications both for genre analysis and for organizational practice

    The Role of an Online Community in Relation to Other Communication Channels in a Business Development Case

    Get PDF
    We investigated how sales representatives (Salespeople) and members of a service business development department (the Service Dept.) communicated within an informal online community, particularly in relation to their use of other informal and formal communication channels. We found that while the Service Dept. developed formal communication channels in order to fulfill the information needs of Sales, some types of information were apparently more effectively provided by the online community. The result suggests that an online community may play an important role both in making visible information needs, and in providing information that can’t be better provided by the formal organization

    Insulin Signaling Mediates Sexual Attractiveness in Drosophila

    Get PDF
    Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS) is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC), many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS) together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS) we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR) pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential

    FLIP-LAC user guide

    Get PDF
    This is version 6.4 of the FLIP-LAC manual. The Food Labeling Information Program for Latin America (FLIP-LAC) for data collection and registration is a smartphone-based technology developed by the University of Toronto, Canada. The FLIP iPhone app is meant for quickly capturing a limited amount of information about a food product - most importantly the product barcode and photos of product. Once this information is captured, the data and the photos are later uploaded to the FLIP website where the rest of the data entry can be completed based on photos of the product

    Best practice standards for the delivery of NHS infection services in the United Kingdom

    Get PDF
    Infection expertise in the NHS has historically been provided predominantly by hospital-based medical microbiologists responsible for provision of diagnostic services and advice to front-line clinicians. While most hospitals had consultant-led microbiology departments, infectious iiseases departments were based in a small number of specialist centres. The demand for infection expertise is growing in the NHS, driven by advances in medical care, increasing awareness of the impact of antibiotic resistant and healthcare associated infections and threats from emerging infectious diseases. At the same time diagnostic services are being reorganised into pathology networks. The Combined Infection Training (CIT) is delivering a consultant workforce with expertise both in laboratory diagnostic practice and delivery of direct patient care. These changes create challenges for delivery of high quality infection expertise equitably across the NHS. They also offer an opportunity to shape infection services to meet clinical and laboratory demands.To date there has not been an attempt to bring together a single set of best practice guidelines for the requirements of an infection service. This document sets out seven standards. These are written to be practical and flexible according to the diverse ways in which infection expertise may be required across the NHS. It has been prepared by the Clinical Services Committee of the British Infection Association drawing on published evidence and guidance where they exist and on the group’s extensive experience of delivering infection services in hospitals across the NHS. It was then refined with input from the RCP Joint Specialist committee (JSC) and the RCPath Specialist Advisory Committee (SAC) and through consultation with the RCPath membership. It has been endorsed by the Royal College of Pathologists and the Royal College of Physicians. It will be reviewed annually by the CSC and updated as additional evidence becomes available

    Advancing translational research with the Semantic Web

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen <it>Translational Research</it>, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature.</p> <p>Results</p> <p>We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine.</p> <p>Conclusion</p> <p>Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.</p
    corecore