28 research outputs found

    Bovine Aorta Endothelial Cell Incubation with Interleukin 2: Morphological Changes Correlate with Enhanced Vascular Permeability

    Get PDF
    Interleukin 2 induced alterations in the morphology of bovine aortic endothelial cells in vitro. The changes observed in confluent cultures of bovine aortic endothelial cells included retraction and elongation of eel ls leading to enlarged gaps between cells quantified by image analysis. Purified IL-2 (1 U/ml medium) increased the gaps between endothelial cells 3-4-fold compared with control cultures. The effect was transient, since the cells reverted to their original morphology 6-12 hours after the removal of lL-2. Correlative scanning electron microscopy (SEM) studies using fresh bovine aorta showed a dose-dependent alteration of the endothelial surface by IL-2 characterized by rounding and elongation of endothelial cells and prominent perinuclear areas. Gaps between the endothelial cells were observed when aorta samples were incubated with 2 U of IL-2/ml of medium. This was confirmed by SEM, transmission electron microscopy and Evans blue dye staining. These results suggest that IL-2 caused morphological alterations in endothelial cells that enhanced the permeability of the vascular endothelium

    Dealing with heterogeneity of treatment effects: is the literature up to the challenge?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses.</p> <p>Methods</p> <p>Articles were selected through a probability sample of randomized controlled trials (RCTs) published in <it>Annals of Internal Medicine</it>, <it>BMJ</it>, <it>JAMA</it>, <it>The Lancet</it>, and <it>NEJM </it>during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting.</p> <p>Results</p> <p>319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively).</p> <p>Conclusion</p> <p>HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.</p

    The Role of C-reactive Protein in Innate and Acquired Inflammation: New Perspectives: DOI: 10.14800/ics.1409

    No full text
    The participation of C-reactive protein (CRP) in host defense against microorganisms has been well described. More controversial has been its role in chronic conditions such as cardiovascular disease. Our recent publications explain the reasons for some of the confusion concerning CRP as a risk factor for disease and whether it is pro-inflammatory or anti-inflammatory. We found that two isoforms of CRP, pentameric (pCRP) and monomeric (mCRP), on microparticles (MPs), were not measureable by standard clinical assays. When we investigated MPs by imaging cytometry in plasma from controls versus patients with peripheral artery disease, we found that MPs from endothelial cells bearing mCRP were elevated. This elevation did not correlate with the soluble pCRP measured by high-sensitivity CRP assays. The data suggest that detection of mCRP on MPs may be a more specific marker in diagnosis, measurement of progression, and risk sensitivity in chronic disease. In an in vitro model of vascular inflammation, pCRP was anti-inflammatory and mCRP was pro-inflammatory for macrophage and T cell polarization. When we further investigated pCRP under defined conditions, we found that pCRP in the absence of a phosphocholine ligand had no inflammatory consequences. When combined with phosphocholine ligands, pCRP signaled through two Fcg receptors (FcgRI and FcgRII) via phosphorylation of spleen tyrosine kinase (pSYK) to activate monocytes. Phosphocholine itself, when bound to pCRP, induced a congruent M2 macrophage and Th2 response. Phosphocholine is also the head group on the lipid phosphatidylcholine, which can become oxidized. Liposomes bearing oxidized phosphatidylcholine without pCRP promoted a uniform M1 macrophage and Th1 pro-inflammatory response. When oxidized liposomes were bound to pCRP, there was a disjunction in the macrophage and T cell response: monocytes matured into M2 macrophages, but the T cells polarized into a Th1 phenotype. The CRP-bound liposomes signaled monocytes via FcgRII to promote an anti-inflammatory M2 macrophage state, whereas the lack of FcgR on T cells allowed their liposome-induced polarization to a pro-inflammatory Th1 phenotype unopposed by the contribution of the pCRP/FcgR interaction.&nbsp;Different isoforms of CRP and its binding to complex ligands may determine its biological activities and their contribution to inflammatory states
    corecore