4,966 research outputs found

    Numerical Sensitivity Tests of Volatile Organic Compounds Emission to PM2.5 Formation during Heat Wave Period in 2018 in Two Southeast Korean Cities

    Get PDF
    A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 mu m (PM2.5) concentrations were studied in the Busan and Ulsan metropolitan areas in southeast Korea. A weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) was employed, and we carried out VOC emission sensitivity simulations to investigate variations in PM2.5 concentrations during the heat wave period that occurred from 11 July to 15 August 2018. In our study, when anthropogenic VOC emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment-2015 (CREATE-2015) inventory were increased by approximately a factor of five in southeast Korea, a better agreement with observations of PM2.5 mass concentrations was simulated, implying an underestimation of anthropogenic VOC emissions over southeast Korea. The simulated secondary organic aerosol (SOA) fraction, in particular, showed greater dominance during high temperature periods such as 19-21 July, 2018, with the SOA fractions of 42.3% (in Busan) and 34.3% (in Ulsan) among a sub-total of seven inorganic and organic components. This is considerably higher than observed annual mean organic carbon (OC) fraction (28.4 +/- 4%) among seven components, indicating the enhancement of secondary organic aerosols induced by photochemical reactions during the heat wave period in both metropolitan areas. The PM2.5 to PM10 ratios were 0.69 and 0.74, on average, during the study period in the two cities. These were also significantly higher than the typical range in those cities, which was 0.5-0.6 in 2018. Our simulations implied that extremely high temperatures with no precipitation are significantly important to the secondary generation of PM2.5 with higher secondary organic aerosol fraction via photochemical reactions in southeastern Korean cities. Other possible relationships between anthropogenic VOC emissions and temperature during the heat wave episode are also discussed in this study

    Intelligent PV Power Smoothing Control Using Probabilistic Fuzzy Neural Network with Asymmetric Membership Function

    Get PDF
    An intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF) is proposed in this study. First, a photovoltaic (PV) power plant with a battery energy storage system (BESS) is introduced. The BESS consisted of a bidirectional DC/AC 3-phase inverter and LiFePO4 batteries. Then, the difference of the actual PV power and smoothed power is supplied by the BESS. Moreover, the network structure of the PFNN-AMF and its online learning algorithms are described in detail. Furthermore, the three-phase output currents of the PV power plant are converted to the dq-axis current components. The resulted q-axis current is the input of the PFNN-AMF power smoothing control, and the output is a smoothing PV power curve to achieve the effect of PV power smoothing. Comparing to the other smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the PV power smoothing control using PFNN-AMF. In addition, a personal computer- (PC-) based PV power plant emulator and BESS are built for the experimentation. From the experimental results of various irradiance variation conditions, the effectiveness of the proposed intelligent PV power smoothing control can be verified

    Sensitivity of Simulated PM2.5 Concentrations over Northeast Asia to Different Secondary Organic Aerosol Modules during the KORUS-AQ Campaign

    Get PDF
    A numerical sensitivity study on secondary organic aerosol formation has been carried out by employing the WRF-Chem (Weather Research and Forecasting model coupled with Chemistry). Two secondary organic aerosol formation modules, the Modal Aerosol Dynamics model for Europe/Volatility Basis Set (MADE/VBS) and the Modal Aerosol Dynamics model for Europe/Secondary Organic Aerosol Model (MADE/SORGAM) were employed in the WRF-Chem model, and surface PM2.5 (particulate matter less than 2.5 mu m in size) mass concentration and the composition of its relevant chemical sources, i.e., SO42-, NO3-, NH4+, and organic carbon (OC) were simulated during the Korea-United States Air Quality (KORUS-AQ) campaign period (1 May to 12 June 2016). We classified the KORUS-AQ period into two cases, the stagnant period (16-21 May) which was dominated by local emission and the long-range transport period (25-31 May) which was affected by transport from the leeward direction, and focused on the differences in OC secondary aerosol formation between two modules over Northeast Asia. The simulated surface PM2.5 chemical components via the two modules showed the largest systematic biases in surface OC, with a mean bias of 4.5 mu g m(-3), and the second largest in SO42- abundance of 2.2 mu g m(-3) over Seoul. Compared with surface observations at two ground sites located near the western coastal Korean Peninsula, MADE/VBS exhibited the overpredictions in OC by 170-180%, whereas MADE/SORGAM showed underpredictions by 49-65%. OC and sulfate via MADE/VBS were simulated to be much higher than that simulated by MADE/SORGAM by a factor of 2.8-3.5 and 1.5-1.9, respectively. Model verification against KORUS-AQ aircraft measurements also showed large discrepancies in simulated non-surface OC between the two modules by a factor of five, with higher OC by MADE/VBS and lower IC by MADE/SORGAM, whereas much closer MADE/VBS simulations to the KORUS-AQ aircraft measurements were found. On the basis of the aircraft measurements, the aggregated bias (sum of four components) for PM2.5 mass concentrations from the MADE/VBS module indicated that the simulation was much closer to the measurements, nevertheless more elaborate analysis on the surface OC simulation performance would be needed to improve the ground results. Our findings show that significant inconsistencies are present in the secondary organic aerosol formation simulations, suggesting that PM2.5 forecasts should be considered with great caution, as well as in the context of policymaking in the Northeast Asia region

    A Case of Ocular Benign Lymphoid Hyperplasia Treated with Bevacizumab Injection

    Get PDF
    We report the first case of ocular benign lymphoid hyperplasia (BLH) treated with subconjunctival injection of bevacizumab (Avastin). A 27-year-old man presented to our clinic with conjunctival masses and limbal neovascularization. An incisional biopsy yielded the diagnosis of BLH. The patient was subsequently given a subconjunctival injection of bevacizumab (1.25 mg / 0.1 mL). The patient did not experience recurrence or malignant metaplasia during the one-year follow-up period. In patients with conjunctival BLH, subconjunctival injection of bevacizumab can be a useful treatment option in patients unable to undergo a surgical procedure due to limbal neovascularization

    Current and state of the art on the electrophysiologic characteristics and catheter ablation of arrhythmogenic right ventricular dysplasia/cardiomyopathy

    Get PDF
    AbstractArrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited genetic disease caused by defective desmosomal proteins, and it has typical histopathological features characterized by predominantly progressive fibro-fatty infiltration of the right ventricle. Clinical presentations of ARVD/C vary from syncope, progressive heart failure (HF), ventricular tachyarrhythmias, and sudden cardiac death (SCD). The 2010 modified Task Force criteria were established to facilitate the recognition and diagnosis of ARVD/C. An implantable cardiac defibrillator (ICD) remains to be the cornerstone in prevention of SCD in patients fulfilling the diagnosis of definite ARVD/C, especially among ARVD/C patients with syncope, hemodynamically unstable ventricular tachycardia (VT), ventricular fibrillation, and aborted SCD. Further risk stratification is clinically valuable in the management of patients with borderline or possible ARVD/C and mutation carriers of family members. However, given the entity of heterogeneous penetrance and non-uniform phenotypes, the standardization of clinical practice guidelines for at-risk individuals will be the next frontier to breakthrough.Antiarrhythmic drugs are prescribed frequently to patients experiencing frequent ventricular tachyarrhythmias and/or appropriate ICD shocks. Amiodarone is the recommended drug of choice. Radiofrequency catheter ablation (RFCA) has been demonstrated to effectively eliminate the drug-refractory VT in patients with ARVD/C. However, the efficacy and clinical prognosis of RFCA via endocardial approach alone was disappointing prior to the era of epicardial approach. In recent years, it has been proven that the integration of endocardial and epicardial ablation by targeting the critical isthmus or eliminating abnormal electrograms within the diseased substrates could yield higher acute success and lower recurrence of ventricular tachyarrhythmias during long-term follow-up. Heart transplantation is the final option for patients with extensive disease, biventricular HF with uncontrollable hemodynamic compromise, and refractory ventricular tachyarrhythmias despite aggressive medical and ablation therapies
    corecore