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An intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function
(PFNN-AMF) is proposed in this study. First, a photovoltaic (PV) power plant with a battery energy storage system (BESS) is
introduced. The BESS consisted of a bidirectional DC/AC 3-phase inverter and LiFePO4 batteries. Then, the difference of the
actual PV power and smoothed power is supplied by the BESS. Moreover, the network structure of the PFNN-AMF and its
online learning algorithms are described in detail. Furthermore, the three-phase output currents of the PV power plant are
converted to the dq-axis current components. The resulted q-axis current is the input of the PFNN-AMF power smoothing
control, and the output is a smoothing PV power curve to achieve the effect of PV power smoothing. Comparing to the other
smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the
PV power smoothing control using PFNN-AMF. In addition, a personal computer- (PC-) based PV power plant emulator and
BESS are built for the experimentation. From the experimental results of various irradiance variation conditions, the
effectiveness of the proposed intelligent PV power smoothing control can be verified.

1. Introduction

Since the environmental pollution problems of the world are
deteriorated in recent years, developing clean energy sources
and protecting the environment become the major issues of
the modern world. Thus, the development and application
of clean renewable energy sources, such as solar, wind, tides,
fuel cell, and geothermal, are getting more and more world-
wide attention. Among these renewable energy sources, solar
power will gradually be dominant due to its availability and
reliability. Owing to the price of the photovoltaic (PV) sys-
tem declines of around 75% in less than 10 years has made
the solar power more cost competitive in various countries
and market segments; the cumulative installed capacity of
the PV in the world has been reached to 178GW in the end
of 2014 [1]. European Photovoltaic Industry Association
(EPIA) predicts that the worldwide total installed capacity
of the PV system in 2019 could reach between 396 and
540GW with the highest probability scenario being around
450GW. Meanwhile, the government of Taiwan has decided
to raise the official PV installation target from 13GW to

20GW in 2025. In other words, the global cumulative
PV capacity will have explosive growth in the next decade.
Furthermore, the renewable energy source- (RES-) based
distributed energy sources are normally connected to the
grid using power electronics. Therefore, the development
of a grid-connected PV system including DC/DC converter
and AC/DC inverter considering the ancillary service of
power quality is important for solving the issues of environ-
mental protection [2].

The intermittent nature of the output power from RESs
becomes a serious concern for the stability of the grid par-
ticularly with increasing RES penetration and a high per-
centage of instantaneous demand being supplied by RESs.
In Germany, 80% of instantaneous demand was supplied
by RESs on Aug. 23, 2015. Therefore, significant operating
reserves are required to meet the demand in case of a sudden
decrease in the output of RESs, thus causing an increase in
the operational cost of the power system [3]. Moreover, addi-
tional regulations and standards are expected to be imposed
on large PV power plants owing to their potential adverse
impacts on reliability and stability of the power system. A
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possible solution for regulating the intermittent output
power of a PV power plant is to integrate a battery energy
storage system (BESS) [4]. The BESS can provide flexible
energy management solutions that can improve the power
quality of renewable-energy power generation systems.
Several control strategies and configurations for hybrid
BESSs, such as combining the BESS with superconducting
magnetic energy system, flywheel energy system, and
energy capacitor system, have been proposed [5]. The
BESSs have a response time in the range of milliseconds
and are able to compensate in real time the high intermit-
tency of the RESs by operating the BESSs in charging/dis-
charging mode in order to keep the output power ramp
rate of the power plant inside admissible values [6]. In
Lin et al. [7], an intelligent wind power smoothing control
using recurrent fuzzy neural network was developed. The
difference of the actual wind power and smoothed power
is supplied by the BESS. On the other hand, the state of
charge (SOC) of a battery, which is used to describe its
remaining capacity, is a very important control parameter
for the battery usage. As the SOC is an important param-
eter, accurate estimation of the SOC can protect battery,
prevent over discharge, improve the battery life, and facil-
itate the development of control strategies to save energy
[8]. There are many methods to estimate the SOC of a
battery including inverse mapping using the SOC-to-open
circuit voltage characterization curves, Coulomb counting,
impedance measurements, and algorithms using extended
Kalman filter and particle filter [9, 10].

Since the neural networks possess the characteristics of
fault tolerance, parallelism, and online learning, many
researches of neural network modeling and control for
renewable energy applications have been proposed [11–13].
In Liu et al. [11], a complex-valued recurrent neural network
was proposed to predict the total output of the wind
power plant based on historical data of wind speed and
wind direction. Moreover, an improved differential evolution
algorithm-based Elman neural network controller was pro-
posed to control a squirrel-cage induction generator system
for grid-connected wind power applications [12]. In Urias
et al. [13], a prediction model that utilizes a layer recurrent
neural network technique for estimating the wind power out-
put of the turbine was proposed based on a multilayer neural
network with back propagation training. In addition, a fuzzy
neural network (FNN) is capable of fuzzy reasoning in han-
dling uncertain information and artificial neural networks
for learning from processes. Thus, there has been much
research focused on using FNNs to represent complex
plants and construct advanced controllers [14, 15] based
on the back-propagation (BP) algorithm. Moreover, the
probabilistic neural network (PNN) is a feedforward neural
network, and its structure is the neural network implemen-
tation of Parzen nonparametric probability density function
estimation and Bayes classification rule [16]. The PNNs can
handle the uncertainties effectively and have been widely
used in industrial applications [17–19]. According to the
aforementioned advantages of FNNs and PNNs, the proba-
bilistic FNN (PFNN), which combines the characteristics
of FNN (degree of truth) and the characteristics of PNN

(probability of truth), has been applied in some areas
such as modeling and control problems [20, 21]. In addi-
tion, if the dimensions of the standard Gaussian are
directly extended in asymmetric membership functions
(AMFs), not only the learning capability of the networks
can be upgraded but also the number of fuzzy rules can be
optimized [22, 23].

A new PFNN-AMF is proposed in this study to develop
an intelligent PV power smoothing control. The proposed
PFNN-AMF is mainly developed based on PNN, fuzzy logic
control, and AMF. Therefore, it possesses the superior
modeling performance and adaptability of the PNN, the
advantages of the fuzzy logic control to handle uncertain
information and to approximate nonlinear systems, and the
upgraded learning capability of the networks owing to the
AMF. Moreover, actual PV power plant data from the PV
power plant built in Australia is adopted for the PC-based
PV power plant emulator in this study. Then, the three-
phase output currents of the PV power plant emulator are
converted to the dq-axis current components. The resulted
q-axis current represents the active power and also is the
input of the PFNN-AMF power smoothing control. By using
the excellent approximation and online training abilities of
the PFNN-AMF with a grid power fluctuation limitation, a
smoothed power with a very limited time delay can be
obtained. Moreover, the difference of the actual PV power
and smoothed power is supplied by the BESS. Therefore,
using the PFNN-AMF power smoothing control, a minimum
energy capacity of the BESS can be achieved with acceptable
power quality of the grid. The grid active power fluctuation
limits for per minute and per ten minutes are both set to be
10% of the rated power of the PV power plant in this study.
This study is organized as follows: Section 2 illustrates the
modeling of PV power plant and BESS. Section 3 describes
the PFNN-AMF smoothing architecture including the net-
work structure of the PFNN-AMF and its online learning
algorithms. Section 4 and Section 5 provide some compari-
son of various smoothing methods and experimental results.
Finally, some conclusions are given in Section 6.

2. System Architecture

2.1. Modeling of PV Power Plant. In general, a PV power
plant comprises a large number of PV systems as shown in
Figure 1. In each PV system, various PV modules are
arranged in arrays and connected to the feeder through
DC/DC and DC/AC converters with wireless communica-
tion module. The PV modules are constructed from a large
number of solar cells in series-parallel configurations. The
output of the PV power plant is then connected to the grid
through a power transformer. In a PV power plant, since
the PV modules are placed adjacent to each other, all the
PV modules are assumed to have the same characteristics,
solar radiation and operational and environmental factors
that may affect the output of the power plant.

The maximum output power ratings of PV systems
are provided by the manufacturers and usually are expressed
in peak-watt (WP). The current-voltage characteristics
(I-V characteristics) under the standard test condition (the
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radiation level of 1 kW/m2 at a temperature of 25°C) can be
calculated using the following equations [24]:

I = r Isc + KI Tc − 25 ,
V = Voc − KVTc,

1

where r is the radiation level; Isc is the short circuit cur-
rent; KI is the short circuit current temperature coeffi-
cient in A/°C; Voc is the open circuit voltage; KV is the
open circuit voltage temperature coefficient in V/°C; and
Tc is the cell temperature in °C which can be expressed as
follows [24]:

Tc = Ta + r
Tno − 20

0 8 , 2

where Ta is the ambient temperature and Tno is the nominal
operating temperature of the cell. The ideal output power
P∗ of a PV power plant for a given radiation level, ambient
temperature, and the current-voltage characteristics can be
calculated using the following relationships:

P∗ = nFFIV , 3

where n is the total number of PV modules and FF is the
fill factor, which depends on the module characteristics
[25]. However, considering the energy losses due to array

temperature, incomplete utilization of the irradiation, con-
verter losses, and system component inefficiency, the actual
output power Ppv of a PV power plant can be expressed
as follows:

Ppv = nFFIVPR, 4

where PR is the performance ratio defined in IEC61724 [26].

2.2. Modeling of Battery Energy Storage System. In this study,
a BESS with one-stage circuit architecture is developed as a
PV power smoothing control. The BESS and the PV power
plant emulator are also connected to the grid as shown in
Figure 2. The bidirectional DC/AC three-phase inverter is
responsible for the two-way power transmission between
the battery terminal and the PV power plant emulator. It is
responsible for supplying the power difference of the actual
PV power and smoothed power. Moreover, in Figure 2, iga,
igb, and igc are the three-phase output currents of the PV
power plant emulator; ioa,iob, and ioc are the three-phase out-
put currents of the DC/AC inverter; vbat and ibat are the DC
bus voltage and converter input current of the DC/DC con-
verter; v∗a ,v∗b , and v∗c are the PWM voltage commands of
the DC/AC inverter; va,vb, and vc are the three-phase voltages
of the grid; ia,ib, and ic are the three-phase currents of the
grid; v∗q and v∗d are the dq-axis PWM voltage commands of
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Figure 1: Schematic presentation of PV power plant with BESS.
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the DC/AC inverter; i∗qg and iqg are the q-axis output current
command and q-axis output current of the PV power plant
emulator, that is, the active power component; idg is the
d-axis output current of the PV power plant emulator, that
is, the reactive power component; i∗do,i∗qo,ido, and iqo are the
dq-axis output current commands and dq-axis output cur-
rents of the DC/AC inverter; and θi is the synchronous angle
obtained from phase-lock-loop (PLL) block. The axis conver-
sions between the ioa,iob,ioa, and ido,iqo and v∗q ,v∗d , and v∗a ,v∗b ,v∗c
are shown in the following:

ido
iqo

= 2
3

cosθi cos θi −
2π
3 cos θi +

2π
3

sinθi sin θi −
2π
3 sin θi +

2π
3

ioa
iob
ioc

,

v∗a
v∗b
v∗c

=

cosθi sinθi

cos θi −
2π
3 sin θi −

2π
3

cos θi +
2π
3 sin θi +

2π
3

v∗q
v∗d

5

For the three-phase inverter of the BESS, it is con-
trolled by the dq-axis current control. The d-axis current

control is responsible for the reactive power control by
using the reactive power current command i∗do and is set
to be zero. The q-axis current control is responsible for
the active power control by using the active power current
command i∗qo, which is the difference between the output
of the PFNN-AMF i∗qg and the active power component
of the PV power iqg. When the current command i∗qo is
positive, the circuit operates in inverter mode, and the bat-
tery is discharged. Conversely, when the current command
i∗qo is negative, the circuit operates in rectifier mode, and
the battery is charged. The individual difference between
the current command i∗do and i∗qo and the current ido and
iqo are regulated via two proportional-integral (PI) control-
lers to generate the respective dq-axis voltage command v∗q
and v∗d Then v∗q and v∗d are converted to voltage com-
mand v∗a ,v∗b , and v∗c in abc-axis for sinusoidal PWM
(SPWM) by using the synchronous angle θi.

3. PFNN-AMF PV Power Smoothing Control

A PFNN-AMF is proposed in this study for the intelli-
gent PV power smoothing control owing to its excellent
approximation and online training abilities. Using the
PFNN-AMF power smoothing control and considering
the constraint of grid power fluctuation rate, a smoothed
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Figure 2: BESS with intelligent PV power plant smoothing control.
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power with a very limited time delay can be obtained.
Since the difference of the actual PV power and smoothed
power is supplied by the BESS, the minimum capacity
of the BESS can be achieved with acceptable power
quality of the grid. The network structure of the PFNN-
AMF and its online learning algorithms are introduced in
this section.

3.1. PFNN-AMF. A five-layer PFNN-AMF, which includes
the input layer (layer 1), the membership layer (layer 2),
the probabilistic layer (layer 3), the rule layer (layer 4),
and the output layer (layer 5) with two inputs and one
output, is shown in Figure 3(a). Moreover, the signal propa-
gation and the basic function of each layer are introduced in
the following.

3.1.1. Layer 1 (Input Layer). In the input layer, the node input
and the node output are represented as:

neti N = xi,
yi N = f i neti N = neti N , i = 1, 2,

6

where xi represents the ith input to the input layer and N
represents the Nth iteration. In this study, the input variables
are e1 N = e = i∗qg − iqg and e2 N = e, which are the tracking
error and its derivative, respectively.

3.1.2. Layer 2 (Membership Layer). In the membership
layer, each node utilizes an asymmetric Gaussian function
to realize the fuzzification operation in the PFNN-AMF as
shown in Figure 3(b). By using the asymmetric membership
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functions (AMFs), the learning capability of the networks
can be upgraded and the number of fuzzy rules can be opti-
mized by extending the dimensions of the standard Gaussian
function [22, 23]. The node input and output of this layer are
presented as

netj N =
−

yi N −mj N
2

σvj N
2 , −∞ < yi N ≤mj

−
yi N −mj N

2

σr j N
2 , mj < yi N ≤∞,

μj N = f j netj N = exp net j N , j = 1, 2,…, 6,
7

where μj N is the layer 2 node output; mj is the mean of the
asymmetric Gaussian function in the jth term associated with
the ith input variable; and σvj and σr j are the left-hand-side
and right-hand-side standard deviations of the asymmetric
Gaussian function in the jth term associated with the ith
input variable, respectively.

3.1.3. Layer 3 (Probabilistic Layer). In the probabilistic layer,
the Gaussian function is adopted and each node represents a
Gaussian function. The general form for these nodes of this
layer can be expressed as

netk N = −
μj N −mk

2

σk
2 ,

Pk N = f k netk N = exp netk N , k = 1, 2,…, 18,
8

where Pk N is the layer 3 output and mk and σk are the
mean and standard deviation of the Gaussian function,
respectively.

3.1.4. Layer 4 (Rule Layer). In the rule layer, each node corre-
sponds to a rule in the knowledge base. By using the Mam-
dani inference, the node itself performs the t-norm
operation (product operation) to obtain the inference set
according to the rules as shown in (9). The probabilistic
information is processed using the Bayes’ theorem in consid-
eration of the group of fuzzy grade being independent vari-
ables as shown in (10). Moreover, the input of the output
node of this layer shown in (11) is the production of μIl N
and PI

l N , which are defined as follows:

μIl N =∏
j
wjlμ j N , 9

PI
l N =∏

k
wklPk N , 10

where wjl is the connective weight between the membership
layer and the rule layer which is set to be 1 and wkl is the con-
nective weight between the probabilistic layer and the rule
layer which is also set to be 1. In addition, the input and out-
put of the output node of this layer are represented as

netl N = μIl N PI
l N , 11

RO
l N = f l netl N = netl N , l = 1, 2,…, 9, 12

where RO
l N is the lth node output of the rule layer.

3.1.5. Layer 5 (Output Layer). In the output layer, the single
node o in this layer is labeled with ∑, which computes the
overall output as the summation of all input signals. The
node output is represented as

neto N =〠
l

wl N RO
l N ,

yo N = f o neto N = neto N , o = 1,
13

where the connecting weight wl N is the output action
strength of the oth output associated with the lth rule,
RO
l N represents the lth input to the node of layer 5, and

yo N equals the control current iqg

3.2. Online Parameter Training. The central part of the
learning algorithm for the PFNN-AMF concerns how to
recursively obtain a gradient vector in which each element
in the learning algorithm is defined as the derivative of an
energy function with respect to a parameter of the network
by using the back-propagation (BP) learning rule. To
describe the online learning algorithm of the PFNN-AMF
using the supervised gradient decent method, the energy
function E N is defined as

E N = 1
2 i∗qg − iqg

2
= 1
2 e

2, 14

where e = i∗qg − iqg Then, the learning algorithm is described
as follows.

3.2.1. Layer 5. The error term to be propagated is given by

δ5o = −
∂E

∂yo N
= −

∂E
∂iqg

∂iqg
∂yo N

15

The weight is updated by the amount:

Δwl = −η1
∂E
∂wl

= −η1
∂E

∂yo N
∂yo N
∂wl

= η1δ
5
oR

O
l , 16

where the factor η1 is the learning rate. The connective
weight wl is updated according to the following equation:

wl N + 1 = wl N + Δwl 17

3.2.2. Layer 4. In this layer, the error terms to be propagated
are given by

δl = −
∂E

∂RO
l N

= −
∂E

∂yo N
∂yo N

∂RO
l N

= δ5owl 18

3.2.3. Layer 2. The error terms to be propagated are given by

δj = −
∂E

∂μj N
= −

∂E
∂yo N

∂yo N

∂RO
l N

∂RO
l N

∂μIl N
∂μIl N
∂μj N

=〠
l

δlP
I
l

19

6 International Journal of Photoenergy



Applying the chain rule, the update law of mean of the
asymmetric Gaussian function is

Δmj = −η2
∂E
∂mj

= −η2
∂E

∂yo N
∂yo N

∂RO
l N

∂RO
l N

∂μIl N
∂μIl N
∂μj N

∂μj N

∂mj

=

2η2δj
yi N −mj N

σvj N
2 , −∞ < yi N ≤mj

2η2δj
yi N −mj N

σr j N
2 , mj < yi N ≤∞

20

Moreover, the update rules of σvj and σr j are derived as
follows:

Δσvj = −η3
∂E
∂σvj

= −η3
∂E

∂yo N
∂yo N

∂RO
l N

∂RO
l N

∂μIl N
∂μIl N
∂μj N

∂μj N

∂σvj

= 2η3δj
yi N −mj N

2

σvj N
3 ,

Δσr j = −η4
∂E
∂σr j

= −η4
∂E

∂yo N
∂yo N

∂RO
l N

∂RO
l N

∂μIl N
∂μIl N
∂μj N

∂μj N

∂σr j

= 2η4δj
yi N −mj N

2

σr j N
3 ,

21

where the factors η2,η3, and η4 are the learning rates. The
mean and left-hand-side and right-hand-side standard devi-
ations of the asymmetric membership functions are updated
according to the following equations:

mj N + 1 =mj N + Δmj,
σvj N + 1 = σvj N + Δσvj,
σr j N + 1 = σr j N + Δσr j

22

In order to reduce the computation load, in layer 3, the
mean mk and the standard deviation σk are constants where
mk is set to be 0.4 for k = 1, 4, 7, 10, 13, and 16; to be 0.5
for k = 2, 5, 8, 11, 14, and 17; and to be 0.6 for k = 3, 6, 9,
12, 15, and 18; σk is set to be 1. Furthermore, the exact calcu-
lation of the Jacobian of the system, ∂iqg/∂yo N , is difficult
to be determined due to the unknown dynamics of the BESS.
To overcome this problem, a delta adaptation law is adopted
as follows [27]:

δ5o ≅ i∗qg − iqg + i
∗
qg − iqg = e + e, 23

where i
∗
qg and iqg represent the first derivatives of the q-axis

current command and q-axis current, respectively. In addi-
tion, the values of the learning rates η1, η2, η3, η4 are
usually set to be between 0 and 1. In general, larger values
of the learning rates η1, η2, η3, η4 could result in diver-
gence of the control responses. On the other hand, smaller
values of the learning rates η1, η2, η3, η4 could result
in slow convergence of the control responses. Thus, in this

study, the values of the learning rates η1, η2, η3, η4
are set to be 0.513, 0.372, 0.46, and 0.284 by empirical rules.

3.3. PFNN-AMF Power Smoothing Control. In the power
smoothing control, first, the output three-phase currents of
the PV power plant emulator are converted to dq-axis cur-
rent components. The resulted q-axis current iqg represents
the active current component of the PV power plant emula-
tor. The difference between the output of the PFNN-AMF
i∗qg and iqg, that is, e t and its derivative e t are the two
inputs of the PFNN-AMF power smoothing control. After
that, the output signal i∗qg is generated through the feedfor-
ward structure of the PFNN-AMF following the online learn-
ing parameters of the network. This cycle is repeated every
5ms. Since the learning process is to minimize the difference
between i∗qg and iqg, that is, e t , the curve of the output of
PFNN-AMF i∗qg will be quite similar to the curve of iqg with
limited time delay. On the other hand, though the PFNN-
AMF possesses excellent approximation ability, it is not per-
fect. Thus, the nonperfect i∗qg results in a more gentle PV
power curve to achieve the effect of PV power smoothing.
Therefore, the proposed PFNN-AMF PV power smoothing
scheme not only can reduce the amount of battery capacity
effectively but also takes the power quality of the grid into
account.

4. Comparison of Smoothing Methods

The main objective of this research is to determine the neces-
sary capacity of BESS for use in conjunction with a PV power
plant that allows the output of the combined PV power plant
and BESS to meet the connected grid requirements, that is,
the fluctuation of injected power to the grid should be kept
below some percentage of the rated power to maintain the
grid power quality. To verify the effectiveness of the proposed
power smoothing control strategy, an actual 12-hour PV
power data from the PV power plant built at the University
of Queensland, Australia, [28] is adopted. In Figures 4(a),
4(b), 4(c), 4(d), and 4(e), the PV power data is selected from
6 o’clock to 18 o’clock, and the comparison of smoothing
methods include the average method, the moving average
method, the low-pass filter method, the PFNN method pro-
posed in [20], and the proposed PFNN-AMF method, where
Ppv is the actual PV power and Pout in the smoothed power.
Moreover, Pout can be calculated from i∗qg The required
energy capacity and the required power capacity of the BESS
could be described by the following equation:

EBESS = max 〠
i=a+N

i=a
Ppv ti − Pout ti Δt , 

Ppv > Pout or Pout > Ppv,

24

PBESS = max Ppv ti − Pout ti , 25

where a and a+N are the start and stop time of continues
charging or discharging and Δt is the sampling interval
which is 1 s. The resulted energy capacities and power
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capacities using (24) and (25) of the various methods shown
in Figures 4(a), 4(b), 4(c), 4(d), and 4(e) are shown in Table 1
where the average method requires the largest energy and
power capacities of the battery and the proposed PFNN-
AMF method required the smallest energy and power capac-
ities of the battery. Moreover, the green window highlighted
from 10 o’clock to 11 o’clock in Figures 4(a), 4(b), 4(c),
4(d), and 4(e) is enlarged in Figures 4(f), 4(g), 4(h), 4(i),
and 4(j). From the simulated results shown in Figures 4(f),
4(g), 4(h), 4(i), and 4(j), the time delay phenomena of the
smoothed curves of the moving average and first-order low
pass filter methods are very obvious. Only a smoothed power
curve with limited time delay and with the minimum energy
capacity of the BESS can both be obtained by the proposed
intelligent smoothing method using PFNN-AMF. Further-
more, in this study, the state of charge (SOC) estimation
using Coulomb counting method [10] is adopted for the
management of the active power. In addition, in the energy
management of the battery, the ordinary minimum andmax-
imum SOC is 10% and 90%, respectively. For the comparison
of various smoothing methods and considering the allowed
minimum SOC, a BESS consisting of 6 LiFePO4 batteries
with 40V/30Ah is adopted in this study. Additionally, the
responses of the SOC for 12 hours of various smoothing
methods are shown in Figures 4(k), 4(l), 4(m), 4(n), and
4(o) where the SOC of the average method reaches nearly
its lowest limit 10%. On the other hand, there still have plenty
of capacities for all the other four methods especially the pro-
posed PFNN-AMF method.

To further compare the smoothing performance of vari-
ous smoothing methods for power quality, the standard devi-
ation of the smoothed power is defined as follows:

〠h

i=1 Ppv ti − Pout ti
2

h
, 26

where h is the total number of sampling of 12 hours. The
standard deviations of smoothed power of various smoothing
methods are shown in Table 2 where the PFNN-AMF
method still has the smallest value. In addition, the grid active
power fluctuation limits for per minute and per ten minutes
are both set to be 10% of the rated power of the PV power
plant in this study [29]. The fluctuation percentages of the
injected power using the average method, the moving aver-
age method, the low-pass filter method, the PFNN method,
and the PFNN-AMF method are shown in Figure 5 where
1min average window is shown in Figures 5(a), 5(b), 5(c),
5(d), and 5(e) and 10min average window is shown in

Figures 5(f), 5(g), 5(h), 5(i), and 5(j). Only the PFNN and
the proposed PFNN-AMF methods satisfy the active power
fluctuation 10% limit for both per minute and per ten
minutes. In addition, from the simulation results shown in
Figure 5, the performance of the proposed PFNN-AMF
method is better than the PFNN method. Therefore, the
power quality of the proposed PFNN-AMF power smoothing
control can also be guaranteed.

5. Experimental Set-Up and Experimentation

5.1. Experimental Set-Up. The block diagram of the PC-based
BESS and a PC-based PV power plant emulator is shown in
Figure 6 where the q-axis current control is responsible for
the active power control of the BESS by using the active
power current command i∗qo, which is the difference between
the output of the PFNN-AMF i∗qg and the active power com-
ponent of the PV power iqg. The d-axis current control is
responsible for the reactive power control by using the reac-
tive power current command i∗do and is set to be zero. More-
over, the photos of the PC-based PV power plant emulator
and the PC-based BESS are shown in Figure 7. For the
1.5 kW PC-based PV power plant emulator, a current-
controlled PWM inverter is adopted, and the emulation of
PV power plant is realized via Simulink. For the PC-based
BESS, the capacity of the bidirectional DC/AC three-phase
inverter is 1.5 kW and the DC bus voltage is 240V. Further-
more, three intervals are selected as three different cases from
the 12-hour PV power data provided by the St. Lucia Campus
in Queensland University, and each case with 720 s is built
for implementation. These cases are based on the variation
of the irradiance 700W/m2–900W/m2–1000W/m2–900W/
m2, 900W/m2–1000W/m2–900W/m2–800W/m2, and
700W/m2–800W/m2–700W/m2–900W/m2–1000W/m2.
In addition, to show the effectiveness of the PV smoothing
control with small number of neurons, only 6 and 9 neurons
are adopted at the membership and rule layers in the pro-
posed PFNN-AMF by empirical rules in order to achieve fast
dynamic responses of the smoothing control and to reduce
the execution time simultaneously.

5.2. Experimentation. The experimental results using the
proposed PFNN-AMF smoothing method at the PV irra-
diance variation condition 700W/m2–900W/m2–1000W/
m2–900W/m2 are shown in Figure 8 where the PV power
and the smoothing power are shown in Figure 8(a); the calcu-
lated SOC is shown in Figure 8(b). At 240 s of this case, the
measured three-phase currents at the PV power plant emula-
tor are shown in Figure 8(c); the measured three-phase cur-
rents at the grid side are shown in Figure 8(d); and the
measured three-phase output currents of the inverter are
shown in Figure 8(e). At 480 s of this case, the measured
three-phase currents at the PV power plant emulator are

Table 2: Standard deviation of smoothed power of various
smoothing methods.

Average Moving average LPF PFNN PFNN-AMF

kW 0.378 0.17 0.163 0.139 0.133

Table 1: Required energy capacity and power capacity of battery of
various smoothing methods.

Average
Moving
average

LPF PFNN
PFNN-
AMF

Energy capacity,
kWh

2.23 0.332 0.324 0.281 0.263

Power capacity,
kW

1.018 0.834 0.788 0.685 0.643
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shown in Figure 8(f); the measured three-phase currents at
the grid side are shown in Figure 8(g); and the measured
three-phase output currents of the inverter are shown in
Figure 8(h). Moreover, the experimental results using the
proposed PFNN-AMF smoothing method at the PV irradi-
ance variation condition 900W/m2–1000W/m2–900W/
m2–800W/m2 are shown in Figure 9 where the PV power
and the smoothing power are shown in Figure 9(a); the calcu-
lated SOC is shown in Figure 9(b). At 120 s of this case, the
measured three-phase currents at the PV power plant emula-
tor are shown in Figure 9(c); the measured three-phase cur-
rents at the grid side are shown in Figure 9(d); and the
measured three-phase output currents of the inverter are
shown in Figure 9(e). At 280 s of this case, the measured
three-phase currents at the PV power plant emulator are

shown in Figure 9(f); the measured three-phase currents at
the grid side are shown in Figure 9(g); and the measured
three-phase output currents of the inverter are shown in
Figure 9(h). Furthermore, the experimental results using
the proposed PFNN-AMF smoothing method at the PV irra-
diance variation condition 700W/m2–800W/m2–700W/
m2–900W/m2–1000W/m2 are shown in Figure 10 where
the PV power and the smoothing power are shown in
Figure 10(a); the calculated SOC is shown in Figure 10(b).
At 270 s of this case, the measured three-phase currents at
the PV power plant emulator are shown in Figure 10(c); the
measured three-phase currents at the grid side are shown in
Figure 10(d); and the measured three-phase output currents
of the inverter are shown in Figure 10(e). At 480 s of this case,
the measured three-phase currents at the PV power plant
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Figure 8: Experimental results using PFNN-AMF smoothing method at PV irradiance 700W/m2–900W/m2–1000W/m2–900W/m2: (a) PV
power and smoothing power; (b) SOC estimation of batteries; (c) measured three-phase current at PV power plant emulator at 240 s; (d)
measured three-phase currents at grid side at 240 s; (e) measured three-phase output currents of inverter at 240 s; (f) measured three-
phase current at PV power plant emulator at 480 s; (g) measured three-phase currents at grid side at 480 s; (h) measured three-phase
output currents of inverter at 480 s.
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emulator are shown in Figure 10(f); the measured three-
phase currents at the grid side are shown in Figure 10(g);
and the measured three-phase output currents of the inverter
are shown in Figure 10(h). From the experimental results
shown in Figures 8(a) and 8(b), Figures 9(a) and 9(b), and
Figures 10(a) and 10(b), the effectiveness of the proposed
intelligent PV power smoothing control is obvious. More-
over, the fluctuation of injected power to the grid is kept
below 10% of the rated power for both per minute and per
ten minutes to maintain the grid power quality at all test con-
ditions. In order to observe the charge phenomena of the
LiFePO4 battery, all the measured currents for 0.06 s period
of time are shown in Figures 8(c), 8(d), and 8(e),
Figures 9(c), 9(d), and 9(e), and Figures 10(f), 10(g), and

10(h). On the other hand, in order to observe the discharge
phenomena of the LiFePO4 battery, all the measured currents
for 0.06 s period of time are shown in Figures 8(f), 8(g), and
8(h), Figures 9(f), 9(g), and 9(h), and Figures 10(c), 10(d),
and 10(e). As a result, it can verify that the difference of the
actual PV power and the smoothed power is supplied by
the BESS effectively at all test conditions.

6. Conclusions

An intelligent PV power smoothing control using PFNN-
AMF has been successfully developed in this study. By using
the excellent approximation and online training abilities of
the proposed PFNN-AMF smoothing method, a smoothed
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Figure 9: Experimental results using PFNN-AMF smoothing method at PV irradiance 900W/m2–1000W/m2–900W/m2–800W/m2: (a) PV
power and smoothing power; (b) SOC estimation of batteries; (c) measured three-phase current at PV power plant emulator at 120 s; (d)
measured three-phase currents at grid side at 120 s; (e) measured three-phase output currents of inverter at 120 s; (f) measured three-
phase current at PV power plant emulator at 280 s; (g) measured three-phase currents at grid side at 280 s; (h) measured three-phase
output currents of inverter at 280 s.
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power curve with limited time delay has been obtained.
Moreover, the difference of the actual PV power and
smoothed power is supplied by the BESS. Comparing to the
other smoothing methods, a minimum energy capacity of
the BESS has been achieved using the proposed PFNN-
AMF power smoothing control. From the experimental
results of various PV irradiance variation conditions, the
effectiveness of the proposed intelligent PV power smoothing
control has been verified. The major contributions of this
study are (1) the design of a single-stage and grid-
connected BESS using bidirectional DC/AC 3-phase inverter
and LiFePO4 batteries; (2) the development of the proposed
PFNN-AMF and its online learning algorithm; (3) the devel-
opment of an intelligent PV power smoothing control using
PFNN-AMF; and (4) the achievement of the minimum

energy and power capacities of the battery and a small fluctu-
ation of the grid active power by using the PFNN-AMF PV
power smoothing control.

Conflicts of Interest

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge the financial support
from the Ministry of Science and Technology of Taiwan
through its Grant MOST 104-2221-E-008-041-MY3.

800

1000

1200

1400
Ppv

Pout

1600

(W
)

0 2 4 6 8 10 12
Measured interval of currents

(min)

(a)

50

45

47.5

52.5

55

(%
)

0 2 4 6 8 10 12

50.3%

(min)

(b)

i
ga

i
gb

i
gc

0

4 A 0.01 s

5.168 A (rms)

(c)

0

4 A 0.01 s

5.719 A (rms)
i
a i

b
i
c

(d)

0

4 A 0.01 s

0.55 A (rms)i
oa

i
ob

i
oc

(e)

0

4 A 0.01 s

5.953 A (rms)
i
ga

i
gb

i
gc

(f)

0

4 A 0.01 s

5.353 A (rms)
i
a

i
b

i
c

(g)

0

4 A 0.01 s

0.601 A (rms)
i
oa

i
ob

i
oc

(h)

Figure 10: Experimental results using PFNN-AMF smoothing method at PV irradiance 700W/m2–800W/m2–700W/m2–900W/m2–
1000W/m2: (a) PV power and smoothing power; (b) SOC estimation of batteries; (c) measured three-phase current at PV power plant
emulator at 270 s; (d) measured three-phase currents at grid side at 270 s; (e) measured three-phase output currents of inverter at 270 s; (f)
measured three-phase current at PV power plant emulator at 480 s; (g) measured three-phase currents at grid side at 480 s; (h) measured
three-phase output currents of inverter at 480 s.

14 International Journal of Photoenergy



References

[1] EPIA,Global Market Outlook for Solar Power 2015-2019, 2016.

[2] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang,
“Reactive power control of three-phase grid-connected PV
system during grid faults using Takagi–Sugeno–Kang probabi-
listic,” IEEE Transactions on Industry Electronics, vol. 62, no. 9,
pp. 5516–5528, 2015.

[3] G.Wang, G. Konstantinou, C. D. Townsend et al., “A review of
power electronics for grid connection of utility-scale battery
energy storage systems,” IEEE Transactions on Sustainable
Energy, vol. 7, no. 4, pp. 1778–1790, 2016.

[4] G.Wang, M. Ciobotaru, and V. G. Agelidis, “Power smoothing
of large solar PV plant using hybrid energy storage,” IEEE
Transactions on Sustainable Energy, vol. 5, no. 3, pp. 834–
842, 2014.

[5] X. Li, D. Hui, and X. Lai, “Battery energy storage station
(BESS)-based smoothing control of photovoltaic (PV) and
wind power generation fluctuations,” IEEE Transactions on
Sustainable Energy, vol. 4, no. 2, pp. 464–473, 2013.

[6] A. Saez-de-Ibarra, E. Martinez-Laserna, D. Stroe, M. Swierc-
zynski, and P. Rodriguez, “Sizing study of second life li-ion
batteries for enhancing renewable energy grid integration,”
IEEE Transactions on Industry Applications, vol. 52, no. 6,
pp. 4999–5008, 2016.

[7] F. J. Lin, H. C. Chiang, J. K. Chang, and Y. R. Chang, “Intelli-
gent wind power smoothing control with BESS,” IET Renew-
able Power Generation, vol. 11, no. 2, pp. 398–407, 2017.

[8] W. Y. Chang, “The state of charge estimating methods for
battery: a review,” ISRN Applied Mathematics, vol. 2013,
Article ID 953792, 7 pages, 2013.

[9] C. Zhang, L. Y. Wang, X. Li, W. Chen, G. G. Yin, and J. Jiang,
“Robust and adaptive estimation of state of charge for lithium-
ion batteries,” IEEE Transactions on Industry Electronics,
vol. 62, no. 8, pp. 4948–4957, 2015.

[10] G. Dong, J. Wei, C. Zhang, and Z. Chen, “Online state of
charge estimation and open circuit voltage hysteresis modeling
of LiFePO4 battery using invariant imbedding method,”
Applied Energy, vol. 162, pp. 163–171, 2016.

[11] Z. Liu, D. W. Gao, Y. H. Wan, and E. Muljadi, “Wind power
plant prediction by using neural networks,” in 2012 IEEE
Energy Conversion Congress and Exposition (ECCE),
pp. 3154–3160, Raleigh, NC, USA, September 2012.

[12] F. J. Lin, K. H. Tan, and C. H. Tsai, “Improved differential
evolution-based Elman neural network controller for
squirrel-cage induction generator system,” IET Renewable
Power Generation, vol. 10, no. 7, pp. 988–1001, 2016.

[13] M. E. G. Urias, E. N. Sanchez, and L. J. Ricalde, “Electrical
microgrid optimization via a new recurrent neural net-
work,” IEEE System Journal, vol. 9, no. 3, pp. 945–953,
2015.

[14] W. Yu and X. Li, “Fuzzy identification using fuzzy neural
networks with stable learning algorithms,” IEEE Transactions
on Fuzzy Systems, vol. 12, no. 3, pp. 411–420, 2004.

[15] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction genera-
tor system using fuzzy modeling and recurrent fuzzy neural
network,” IEEE Transactions on Power Electronics, vol. 22,
no. 1, pp. 260–271, 2007.

[16] D. F. Specht, “Probabilistic neural network,” Neural Networks,
vol. 3, no. 1, pp. 109–118, 1990.

[17] K. Z. Mao, K. C. Tan, and W. Ser, “Probabilistic neural-
network structure determination for pattern classification,”
IEEE Transactions on Neural Networks, vol. 11, no. 4,
pp. 1009–1016, 2000.

[18] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic
model for mechanical power fluctuations in asynchronous
wind parks,” IEEE Transactions on Power Systems, vol. 18,
no. 2, pp. 761–768, 2003.

[19] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power
transformer differential protection based on optimal probabi-
listic neural network,” IEEE Transactions on Power Delivery,
vol. 25, no. 1, pp. 102–112, 2010.

[20] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan,
“DSP-based probabilistic fuzzy neural network control for li-
ion battery charger,” IEEE Transactions on Power Electronics,
vol. 27, no. 8, pp. 3782–3794, 2012.

[21] F. J. Lin, Y. C. Hung, J. C. Hwang, I. P. Chang, and M. T. Tsai,
“Digital signal processor-based probabilistic fuzzy neural net-
work control of in-wheel motor drive for light electric vehicle,”
IET Electric Power Applications, vol. 6, no. 2, pp. 47–61, 2012.

[22] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy
neural sliding mode control for dc-dc converters using asym-
metric gaussian membership functions,” IEEE Transactions
on Industry Electronics, vol. 54, no. 3, pp. 1528–1536, 2004.

[23] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent
interval type-2 fuzzy neural network with asymmetric mem-
bership functions for nonlinear system identification,” in Pro-
ceeding of the IEEE International Conference on Fuzzy System,
pp. 1496–1502, Hong Kong, China, September 2008.

[24] D. K. Khatod, V. Pant, and J. Sharma, “Analytical approach for
wellbeing assessment of small autonomous power systems
with solar and wind energy sources,” IEEE Transactions on
Energy Conversion, vol. 25, no. 2, pp. 535–545, 2010.

[25] I. Parra, M. Muñoz, E. Lorenzo, M. García, J. Marcos, and
F. Martínez-Moreno, “PV performance modelling: a review
in the light of quality assurance for large PV plants,” Renew-
able and Sustainable Energy Reviews, vol. 78, pp. 780–797,
2017.

[26] IEC 61724, Photovoltaic System Performance Monitoring
Guidelines for Measurement, Data Exchange and Analysis,
1998.

[27] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-
programmable gate array-based functional link radial basis
function network control for permanent magnet linear syn-
chronous motor servo drive system,” IET Electric Power
Applications, vol. 4, no. 5, pp. 357–372, 2010.

[28] The University of Queensland, “UQ SOLAR photovoltaic
live data,” March 2013, http://solar.uq.edu.au/user/report
Power.php.

[29] M. Jannati, S. H. Hosseinian, B. Vahidi, and G. J. Li, “Mitiga-
tion of windfarm power fluctuation by adaptive linear
neuron-based power tracking method with flexible learning
rate,” IET Renewable Power Generation, vol. 8, no. 6,
pp. 659–669, 2014.

15International Journal of Photoenergy

http://solar.uq.edu.au/user/reportPower.php
http://solar.uq.edu.au/user/reportPower.php


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 201

 International Journal ofInternational Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal ofInternational Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


