38 research outputs found

    How Does an Enriched Environment Impact Hippocampus Brain Plasticity?

    Get PDF
    Brain plasticity is profoundly impacted by one’s living environment. The hippocampus, involved in learning and memory, is highly susceptible to plasticity. Raising rodents in an “enriched environment” (EE) increases learning and memorization aptitudes and decreases the anxiety of the animals. EE consists of a combination of running wheels for voluntary physical exercise, complex inanimate toys, nests, mazes, etc. all of which favor sensory stimulations and social enrichment. EE housing concomitantly increases proliferation and survival of neurons and glia in the dentate gyrus of the hippocampus, induces changes in neuronal morphology, modifies synaptic plasticity, and favors angiogenesis. The mechanisms underlying the effects of EE on plasticity, which have recently been investigated are reviewed here, including the role of glia, the involvement of molecular factors including neurotransmitters (glutamate), neurotrophic factors (BDNF), adipokines (leptin and adiponectin), chemokines, cytokines, and hormones (corticosteroid and thyroid hormones), and at a higher level, the various systems involved (neural networks and hormonal systems). We emphasize recent findings that demonstrate the major role of the immune system in modulating EE-induced changes to hippocampal plasticity. This process involves a variety of immune cells (including macrophages, microglia, natural killer, B-cells, and T-cells), although the mechanisms are yet to be fully elucidated

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions

    Involvment of Cytosolic and Mitochondrial GSK-3ÎČ in Mitochondrial Dysfunction and Neuronal Cell Death of MPTP/MPP+-Treated Neurons

    Get PDF
    Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3ÎČ (GSK-3ÎČ), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3ÎČ in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3ÎČ, evidenced by the increased level of the active form of the kinase, i.e. GSK-3ÎČ phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3ÎČ partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3ÎČ labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3ÎČ activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3ÎČ is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3ÎČ activity might provide protection against mitochondrial stress-induced cell death

    Implication des toxines environnementales, L-BMAA et roténone dans la neurodégénérescence rétinienne

    No full text
    L Ă©tiologie des principales pathologies neurodĂ©gĂ©nĂ©ratives est source de dĂ©bats. Leurs fortes incidences au sein de certaines populations ont suggĂ©rĂ© l implication de facteurs Ă©tiologiques environnementaux. La rotĂ©none est une molĂ©cule extraite des racines de plantes tropicales. Largement utilisĂ©e en laboratoire en tant qu inhibiteur de la chaĂźne respiratoire mitochondriale, elle est depuis quelques annĂ©es une des toxines permettant d obtenir des modĂšles animaux de la maladie de Parkinson. Les parkinsoniens prĂ©sentant des atteintes visuelles, nous avons Ă©tudiĂ© la toxicitĂ© de la rotĂ©none sur la rĂ©tine in vivo. Quelle que soit la voie d administration, les enregistrements d Ă©lectrorĂ©tinographie suggĂšrent que la rotĂ©none altĂšre l activitĂ© rĂ©tinienne chez la souris, en diminuant l amplitude de l onde-b et des potentiels oscillatoires. De façon surprenante, seulement 50% des souris traitĂ©es avec la neurotoxine prĂ©sentent des lĂ©sions rĂ©tiniennes. Sur des neurones en culture, la neurotoxicitĂ© est indĂ©pendante de l Ă©tat d oxydation de la molĂ©cule. Le L-BMAA (ß-N-mĂ©thylamino-L-alanine) est un acide aminĂ© cyanobactĂ©rien produit dans les racines et les graines de Cycas Circinalis. A fortes doses, il provoquerait le complexe pathologique de l Ăźle de Guam appelĂ© "SclĂ©rose LatĂ©rale Amyotrophique/ Complexe Parkinson-DĂ©mence " (SLA/CPD). Les patients atteints par cette maladie prĂ©sentent pour la grande majoritĂ© une rĂ©tinopathie spĂ©cifique. Nous avons ainsi Ă©tudiĂ© la toxicitĂ© du L-BMAA in vivo sur le modĂšle rĂ©tinien. L analyse des Ă©lectrorĂ©tinogrammes de souris montre que son injection par voie intra-oculaire rĂ©duit l amplitude de l onde-b, sans avoir d effet apparent sur celles de l onde-a ou sur les latences de ces deux ondes. Les potentiels oscillatoires prĂ©sentent Ă©galement une forte diminution. La mort des cellules rĂ©tiniennes est mise en Ă©vidence par des analyses histologiques, l activation de la caspase-3, l incorporation d'iodure de propidium et la production de composĂ©s oxygĂ©nĂ©s rĂ©actifs. La co-injection d antagonistes spĂ©cifiques du rĂ©cepteur NMDA (MK-801 et Ifenprodil) protĂšge significativement les neurones rĂ©tiniens de l apoptose induite par le L-BMAA seul ou additionnĂ© de NMDA. Ainsi, d une part nous apportons la preuve que le L-BMAA induit une mort neuronale in vivo, soutenant l hypothĂšse d un lien de causalitĂ© direct entre cette neurotoxine et les dommages neuronaux ; d autre part, nous montrons que la neurotoxicitĂ© implique le rĂ©cepteur NMDA. Le rĂŽle de la RotĂ©none et du L-BMAA dans l Ă©tiologie des pathologies neurodĂ©gĂ©nĂ©ratives est discutĂ©. Nos travaux montrent que ces deux toxines environnementales sont bel et bien toxiques in vivo sur les neurones rĂ©tiniens. Bien que ciblant des populations diffĂ©rentes (respectivement les neurones dopaminergiques et glutamatergiques), leurs effets dĂ©lĂ©tĂšres sont estimĂ©s par Ă©lectrorĂ©tinographie, prouvant ainsi l intĂ©rĂȘt du modĂšle rĂ©tinien comme mĂ©thode d Ă©tude in vivo de la toxicitĂ© des neurotoxines.NICE-BU Sciences (060882101) / SudocSudocFranceF

    RĂŽle des cellules immunitaires et effets des cannabinoĂŻdes dans la physiopathologie des maladies Ă  prions

    No full text
    L Ă©vĂšnement molĂ©culaire clĂ© des maladies Ă  prions est la conversion de la protĂ©ine prion cellulaire (PrPc) en une isoforme pathologique et rĂ©sistance Ă  la protĂ©olyse, nommĂ©e (PrPres). La PrPres est responsable de la neuropathogenĂšse et de la transmissibilitĂ© de la maladie. La recherche de molĂ©cules capables d inhiber sa formation dans le cerveau est donc une stratĂ©gie thĂ©rapeutique envisageable. Le cannabidiol, composĂ© non psycho-actif de Cannabis Sativa, inhibe l accumulation de la PrPres aussi bien in vitro qu in vivo et permet de prolonger significativement le temps de survie des souris infectĂ©es par les prions. De nombreuses Ă©tudes suggĂšrent la participation des cellules immunes dans le transport de la PrPres. GrĂące Ă  un modĂšle de dĂ©plĂ©tion transitoire des cellules dendritiques, nous avons montrĂ© que ces cellules Ă©taient impliquĂ©es dans le processus de lymphoinvasion aprĂšs une infection par voie intra-pĂ©ritonĂ©ale mais pas par voie orale. La fonction physiologique de la PrPc est encore mal connue, en particulier dans le systĂšme immunitaire. La recherche de partenaires protĂ©iques pourrait permettre de mieux comprendre le rĂŽle de la PrPc. Des traceurs fluorescents composĂ©s de PrP recombinante ont Ă©tĂ© produits et utilisĂ©s pour caractĂ©riser les sites de liaison de la PrPc dans les diffĂ©rentes populations de splĂ©noctytes murins. La liaison des traceurs sur des lymphocytes B entraĂźne l'activation de la voie des MAP kinase et l'Ă©lĂ©vation transitoire de la concentration calcique intracellulaire dĂ©montrant que la liaison de la PrPc Ă  ses rĂ©cepteurs est fonctionnelle. Le rĂŽle physiologique de ces interactions et la nature molĂ©culaire des rĂ©cepteurs reste Ă  ĂȘtre dĂ©terminĂ©s.NICE-BU Sciences (060882101) / SudocSudocFranceF

    The adiponectin receptor agonist AdipoRon normalizes glucose metabolism and prevents obesity but not growth retardation induced by glucocorticoids in young mice

    No full text
    International audienceOBJECTIVE:Glucocorticoids (GCs) are highly effective anti-inflammatory and immunosuppressive drugs. However, prolonged GC therapy may cause numerous adverse effects leading to diabetes and obesity, as well as bone disorders such as osteoporosis in adults and growth retardation in children and adolescents. Prevention and care of the GC-induced adverse effects remain challenging. We have previously demonstrated the efficacy of a treatment with a non-peptidic agonist of adiponectin receptors, AdipoRon, to reverse behaviour disorders and fat mass gain induced by long-term GC treatment. In this work, we have established a relevant model of GC-induced growth and metabolic disorders and determined that AdipoRon is a potential therapeutic tool to reverse these metabolic disturbances.METHODS:5-Week-old mice were treated continuously with or without corticosterone (35 mg/L) in drinking water for seven consecutive weeks. Taking advantage of this mouse model displaying various growth and metabolic disorders, we assayed whether AdipoRon (daily intraperitoneal injection of 1 mg/kg/day for the last 20 days) might prevent the GC-induced adverse effects. The control group was treated with vehicle only. Nutritional behaviors and metabolic parameters were followed-up throughout the treatment. Serum insulin and leptin levels were measured by ELISA. Computed tomography and histological analysis of adipose tissue were assessed at the end of the experimental procedure.RESULTS:We found that GC treatment in young mice resulted in continuously increased body weight gain associated with a food intake increase. Compared to vehicle-, GC-treated mice displayed early major hyperleptinemia (up to 6-fold more) and hyperinsulinemia (up to 20-fold more) maintained throughout the treatment. At the end of the experimental procedure, GC-treated mice displayed bone growth retardation (e.g. femur length 15.1 versus 14.0 mm, P < 0.01), higher abdominal adipose tissue volume (4.1 versus 2.3, P < 0.01) and altered glucose metabolism compared to control mice. Interestingly, AdipoRon prevented GC-induced effects on energy metabolism such as abdominal adiposity, insulinemia and leptinemia. However, AdipoRon failed to counteract bone growth retardation.CONCLUSION:We characterized the very early pathological steps induced by long-term GC in young mice in a relevant model, including growth retardation, fat mass gain and glucose homeostasis dysregulation. The adiponectin system stimulation enabled normalization of the adipose tissue and metabolic features of GC-treated mice. Adiponectin receptor agonists such as AdipoRon might constitute a novel way to counteract some GC-induced adverse effects
    corecore