4 research outputs found

    Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing

    No full text
    Introduction: Biofilm production is an important mechanism for the survival of Pseudomonas aeruginosa and its relationship with antimicrobial resistance represents a challenge for patient therapeutics. P. aeruginosa is an opportunistic pathogen frequently associated to nosocomial infections, especially in imunocompromised hosts. Objectives: Analyze the phenotypic biofilm production in P. aeruginosa isolates, describe clonal profiles, and analyze quorum sensing (QS) genes and the occurrence of mutations in the LasR protein of non-biofilm producing isolates. Methods: Isolates were tested for biofilm production by measuring cells adherence to the microtiter plates. Clonal profile analysis was carried out through ERIC-PCR, QS genes were by specific PCR. Results: The results showed that 77.5% of the isolates were considered biofilm producers. The results of genotyping showed 38 distinct genetic profiles. As for the occurrence of the genes, 100% of the isolates presented the lasR, rhlI and rhlR genes, and 97.5%, presented the lasI gene. In this study nine isolates were not biofilm producers. However, all presented the QS genes. Amplicons related to genes were sequenced in three of the nine non-biofilm-producing isolates (all presenting different genetic similarity profile) and aligned to the sequences of those genes in P. aeruginosa strain PAO1 (standard biofilm-producing strain). Alignment analysis showed an insertion of three nucleotides (T, C and G) causing the addition of an amino acid valine in the sequence of the LasR protein, in position 53. Conclusion: The modeling of the resulting LasR protein showed a conformational change in its structure, suggesting that this might be the reason why these isolates are unable to produce biofilm. Keywords: Pseudomonas aeruginosa, Biofilm, Multiresistance, Quorum sensing (QS

    Cowpea and abiotic stresses: identification of reference genes for transcriptional profiling by qPCR

    No full text
    Abstract Background Due to cowpea ability to fix nitrogen in poor soils and relative tolerance to drought and salt stresses, efforts have been directed to identifying genes and pathways that confer stress tolerance in this species. Real-time quantitative PCR (qPCR) has been widely used as the most reliable method to measure gene expression, due to its high accuracy and specificity. In the present study, nine candidate reference genes were rigorously tested for their application in normalization of qPCR data onto roots of four distinct cowpea accessions under two abiotic stresses: root dehydration and salt (NaCl, 100 mM). In addition, the regulation of four target transcripts, under the same referred conditions was also scrutinized. Results geNorm, NormFinder, BestKeeper, and ΔCt method results indicated a set of three statistically validated RGs for each stress condition: (I) root dehydration (actin, ubiquitin-conjugating enzyme E2 variant 1D, and a Phaseolus vulgaris unknown gene—UNK), and (II) salt (ubiquitin-conjugating enzyme E2 variant 1D, F-box protein, and UNK). The expression profile of the target transcripts suggests that flavonoids are important players in the cowpea response to the abiotic stresses analyzed, since chalcone isomerase and chalcone synthase were up-regulated in the tolerant and sensitive accessions. A lipid transfer protein also participates in the cowpea tolerance mechanisms to root dehydration and salt stress. The referred transcript was up-regulated in the two tolerant accessions and presented no differential expression in the sensitive counterparts. Chitinase B, in turn, generally related to plant defense, was an important target transcript under salt stress, being up-regulated at the tolerant, and down-regulated in the sensitive accession. Conclusions Reference genes suitable for qPCR analyses in cowpea under root dehydration and salt stress were identified. This action will lead to a more accurate and reliable analysis of gene expression on this species. Additionally, the results obtained in this study may guide future research on gene expression in cowpea under other abiotic stress types that impose osmotic imbalance. The target genes analyzed, in turn, deserve functional evaluation due to their transcriptional regulation under stresses and biotechnological potential

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore