15 research outputs found

    Zukunft Haldenlandschaft im Aachener Revier : 10 Haldenentwürfe von Studierenden

    Get PDF
    Microbial β-glucosidases have been used for the enhancement of wine aroma. Nevertheless, few enzymes are active in the conditions of winemaking. In this work, the production of a β-glucosidase by an Aureobasidium pullulans strain (Ap-β-gl) isolated from grape ecosystems was evaluated. The maximum enzymatic synthesis using submerged fermentation was after 96 h of growth in complex media containing 20 g/L of cellobiose as the sole carbon source. The crude enzyme (Ap-β-gl) showed optimal pH at 5.5 and two peaks of optimum temperature (at 45 and 70 C). It showed a wide range of pH stability, stability at low temperatures, and tolerance to ethanol, showing suitable characteristics for winemaking conditions. The hydrolysis of glycosidic terpenes by Ap-β-gl was studied, and its ability to efficiently release free terpenols was demonstrated by gas chromatography/mass spectrometry. The enzymatic treatment notably increased the amount of monoterpenes, showing good prospects for its potential application for the development of aroma in wines. © 2012 Springer Science+Business Media New York

    Homoisoflavonoids from Caesalpinia spp.: A Closer Look at Chemical and Biological Aspects

    Get PDF
    Homoisoflavonoids are rare compounds distributed within a few families of plants including species from Fabaceae. The genus Caesalpinia, the main focus of this chapter, is a prolific source of these unique natural products. Homoisoflavonoids from Caesalpinia spp. are associated to ethnopharmacological uses for diverse purposes. In this sense, the following chapter sheds light on the occurrence, biosynthesis, isolation, synthesis, and structural analysis of these compounds from species of the genus Caesalpinia and their biological potential

    Therapeutic activity of a topical formulation containing 8-hydroxyquinoline for cutaneous leishmaniasis

    Get PDF
    Cutaneous leishmaniasis exhibits a wide spectrum of clinical manifestations, however, only a limited number of drugs are available and include Glucantime® and amphotericin B, which in patients induce unacceptable side effects, limiting their use. Thus, there is an urgent demand to develop a treatment for leishmaniasis. Recently, it was demonstrated that 8-hydroxyquinoline (8-HQ) showed significant leishmanicidal effects in vitro and in vivo. Based on it, this work aimed to develop a topical formulation containing 8-HQ and assess its activity in experimental cutaneous leishmaniasis. 8-HQ was formulated using Beeler base at 1 and 2% and showed an emulsion size with a D50 of 25 and 51.3 µm respectively with a shear-thinning rheological behaviour. The creams were able to permeate artificial Strat-M membranes and excised porcine skin without causing any  morphological changes in porcine skin or murine skin tested. In BALB/c mice infected with L. (L.) amazonensis, topical treatment with creams containing 1 or 2% of 8-HQ was found to reduce parasite burden and lesion size compared to infected controls with comparable efficacy to Glucantime® (50mg/kg) administered at the site of cutaneous lesion. In the histological section of the skin from infected controls, a diffuse inflammatory infiltrate with many heavily infected macrophages that were associated with areas of necrosis was observed. On the contrary, animals treated with both creams showed only moderate inflammatory infiltrate, characterized by few infected macrophages, while tissue necrosis was not observed. These histological characteristics in topically treated animals were associated with an increase in the amount of IFN- γ  and a reduction in IL-4 levels. The topical use of 8-HQ was active in decreasing tissue parasitism and should therefore be considered an interesting alternative directed to the treatment of leishmaniasis, considering that this type of treatment is noninvasive, painless, and, importantly, does not require hospitalization, improving patient compliance by allowing to conduct the treatment

    Leishmanicidal Activity and Ultrastructural Changes of Maslinic Acid Isolated from Hyptidendron canum

    No full text
    The therapeutic arsenal for the treatment of leishmaniasis is limited and has serious obstacles, such as variable activity, high toxicity, and costs. To overcome such limitations, it becomes urgent to characterize new bioactive molecules. Plants produce and accumulate different classes of bioactive compounds, and these molecules can be studied as a strategy to combat leishmaniasis. The study presented herein evaluated the leishmanicidal effect of maslinic acid isolated from the leaves of Hyptidendron canum (Lamiaceae) and investigated the morphological that occurred on Leishmania (Leishmania) infantum upon treatment. Maslinic acid was active and selective against promastigote and amastigote forms in a dose-dependent manner. Additionally, it was not toxic to peritoneal macrophages isolated from golden hamsters, while miltefosine and amphotericin B showed mild toxicity for macrophages. Morphological changes in promastigotes of L. (L.) infantum treated with maslinic acid were related to cytoplasmic degeneration, intense exocytic activity, and blebbing in the kDNA; disruption of mitochondrial cristae was observed in some parasites. The nucleus of promastigote forms seems to be degraded and the chromatin fragmented, suggesting that maslinic acid triggers programmed cell death. These results indicate that maslinic acid may be an interesting molecule to develop new classes of drugs against leishmaniasis

    Related Pentacyclic Triterpenes Have Immunomodulatory Activity in Chronic Experimental Visceral Leishmaniasis

    No full text
    Leishmaniasis is a neglected tropical disease caused by the flagellated protozoa of the genus Leishmania that affects millions of people around the world. Drugs employed in the treatment of leishmaniasis have limited efficacy and induce local and systemic side effects to the patients. Natural products are an interesting alternative to treat leishmaniasis, because some purified molecules are selective toward parasites and not to the host cells. Thus, the aim of the present study was to compare the in vitro antileishmanial activity of the triterpenes betulin (Be), lupeol (Lu), and ursolic acid (UA); analyze the physiology and morphology of affected organelles; analyze the toxicity of selected triterpenes in golden hamsters; and study the therapeutic activity of triterpenes in hamsters infected with L. (L.) infantum as well as the cellular immunity induced by studied molecules. The triterpenes Lu and UA were active on promastigote (IC50=4.0±0.3 and 8.0±0.2 μM, respectively) and amastigote forms (IC50=17.5±0.4 and 3.0±0.2 μM, respectively) of L. (L.) infantum, and their selectivity indexes (SI) toward amastigote forms were higher (≥13.4 and 14, respectively) than SI of miltefosine (2.7). L. (L.) infantum promastigotes treated with Lu and UA showed cytoplasmic degradation, and in some of these areas, cell debris were identified, resembling autophagic vacuoles, and parasite mitochondria were swelled, fragmented, and displayed membrane potential altered over time. Parasite cell membrane was not affected by studied triterpenes. Studies of toxicity in golden hamster showed that Lu did not alter blood biochemical parameters associated with liver and kidney functions; however, a slight increase of aspartate aminotransferase level in animals treated with 2.5 mg/kg of UA was detected. Lu and UA triterpenes eliminated amastigote forms in the spleen (87.5 and 95.9% of reduction, respectively) and liver of infected hamster (95.9 and 99.7% of reduction, respectively); and UA showed similar activity at eliminating amastigote forms in the spleen and liver than amphotericin B (99.2 and 99.8% of reduction). The therapeutic activity of both triterpenes was associated with the elevation of IFN-γ and/or iNOS expression in infected treated animals. This is the first comparative work showing the in vitro activity, toxicity, and therapeutic activity of Lu and UA in the chronic model of visceral leishmaniasis caused by L. (L.) infantum; additionally, both triterpenes activated cellular immune response in the hamster model of visceral leishmaniasis

    Oklahoma Daily Times-Journal

    No full text
    Daily newspaper from Oklahoma City, Oklahoma that includes local, territorial, and national news along with advertising

    Ethnopharmacology Study of Plants from Atlantic Forest with Leishmanicidal Activity

    No full text
    Leishmaniasis is an infectious disease caused by a protozoan belonging to Leishmania genus. Different clinical outcomes can be observed depending on the parasite species and patient’s health condition. The outcomes can range from single cutaneous lesions to lethal visceral form. The treatment of all forms of leishmaniasis is based on pentavalent antimonials, and, in some cases, the second-line drug, amphotericin B, is used. Beside the toxicity of both classes of drugs, in some areas of the world, parasites are resistant to antimonial. These detrimental features make fundamental the discovery and characterization of new drugs or plant extracts with leishmanicidal effects. Brazil is a well-known country for its biodiversity. Additionally, the common knowledge inherited for generations in small villages makes Brazil a source of new information and resources for the discovery and development of new drugs. Based on ethnopharmacology, elderlies were interviewed about plants they commonly used for skin diseases and infections. Five native plants from Atlantic forest were indicated; EtOH and n-hexane extracts were prepared with the vegetative organs of the plants and assayed against promastigote and amastigote forms of L. (L.) amazonensis. The major molecules of each extract were detected using qualitative nuclear magnetic resonance. Among all tested extracts, the n-hexane extract from the leave of Eugenia uniflora (Myrtaceae), enriched in myricitrin and quercitrin flavonoids, was the most effective against L. (L.) amazonensis amastigotes. This data supports the ethnopharmacology approach as a successful tool for the discovery of new drugs with leishmanicidal effects

    Hydroalcoholic Extract and Ethyl Acetate Fraction of Bixa orellana Leaves Decrease the Inflammatory Response to Mycobacterium abscessus Subsp. massiliense

    No full text
    The incidence of infections caused by rapidly growing mycobacteria (RGM), especially Mycobacterium abscessus subsp. massiliense (Mabs), is increasing worldwide. Severe infections are associated with abscess formation and strong inflammatory response. This study evaluated the antimicrobial and anti-inflammatory activities of a hydroalcoholic extract (BoHE) and ethyl acetate fraction (BoEA) of Bixa orellana leaves. Antimicrobial activity was evaluated by broth microdilution to determine the minimum inhibitory (MIC) and the minimum bactericidal (MBC) concentrations. Cytotoxicity was evaluated using erythrocytes and RAW 264.7 cells. Nitric oxide (NO) was assayed in stimulated RAW 264.7 cells, and inflammatory cell migration and acute toxicity were evaluated in a Mabs-induced peritonitis mouse model. The compounds present in BoEA were identified by high performance liquid chromatography and mass spectrometry (HPLC-MS). The MIC and MBC values were 2.34 mg/mL and 37.5 mg/mL for BoHE and 0.39 mg/mL and 6.25 mg/mL for BoEA. The extracts did not induce significant toxicity in erythrocytes and RAW 264.7 cells. High levels of NO induced by Mabs were decreased by treatment with both extracts. The anti-inflammatory activity was confirmed in vivo by significant reduction of the cell migration to the peritoneum following BoHE and BoEA pretreatment. Animals treated with BoHE or BoEA did not show signs of acute toxicity in stomach, liver, and kidney. The chemical characterization of BoEA (the most active extract) revealed that kaempferol-3-O-coumaroyl glucose is its major component. The extract of B. orellana may be effective for treating infections caused by Mabs
    corecore