7 research outputs found

    Ab initio modelling of quantum dot qubits: Coupling, gate dynamics and robustness versus charge noise

    Full text link
    Electron spins in semiconductor devices are highly promising building blocks for quantum processors (QPs). Commercial semiconductor foundries can create QPs using the same processes employed for conventional chips, once the QP design is suitably specified. There is a vast accessible design space; to identify the most promising options for fabrication, one requires predictive modeling of interacting electrons in real geometries and complex non-ideal environments. In this work we explore a modelling method based on real-space grids, an ab initio approach without assumptions relating to device topology and therefore with wide applicability. Given an electrode geometry, we determine the exchange coupling between quantum dot qubits, and model the full evolution of a SWAP\sqrt{\text{SWAP}} gate to predict qubit loss and infidelity rates for various voltage profiles. Moreover we explore the impact of unwanted charge defects (static and dynamic) in the environment, and test robust pulse sequences. As an example we exhibit a sequence correcting both systematic errors and (unknown) charge defects, observing an order of magnitude boost in fidelity. The technique can thus identify the most promising device designs for fabrication, as well as bespoke control sequences for each such device.Comment: 21 pages, 15 figure

    Biased Estimator Channels for Classical Shadows

    Full text link
    Extracting classical information from quantum systems is of fundamental importance, and classical shadows allow us to extract a large amount of information using relatively few measurements. Conventional shadow estimators are unbiased and thus approach the true mean in the infinite-sample limit. In this work, we consider a biased scheme, intentionally introducing a bias by rescaling the conventional classical shadows estimators can reduce the error in the finite-sample regime. The approach is straightforward to implement and requires no quantum resources. We analytically prove average case as well as worst- and best-case scenarios, and rigorously prove that it is, in principle, always worth biasing the estimators. We illustrate our approach in a quantum simulation task of a 1212-qubit spin-ring problem and demonstrate how estimating expected values of non-local perturbations can be significantly more efficient using our biased scheme.Comment: 13 pages, 5 figure

    Quantum Error Mitigated Classical Shadows

    Full text link
    Classical shadows enable us to learn many properties of a quantum state ρ\rho with very few measurements. However, near-term and early fault-tolerant quantum computers will only be able to prepare noisy quantum states ρ\rho and it is thus a considerable challenge to efficiently learn properties of an ideal, noise free state ρid\rho_{id}. We consider error mitigation techniques, such as Probabilistic Error Cancellation (PEC), Zero Noise Extrapolation (ZNE) and Symmetry Verification (SV) which have been developed for mitigating errors in single expected value measurements and generalise them for mitigating errors in classical shadows. We find that PEC is the most natural candidate and thus develop a thorough theoretical framework for PEC shadows with the following rigorous theoretical guarantees: PEC shadows are an unbiased estimator for the ideal quantum state ρid\rho_{id}; the sample complexity for simultaneously predicting many linear properties of ρid\rho_{id} is identical to that of the conventional shadows approach up to a multiplicative factor which is the sample overhead due to error mitigation. Due to efficient post-processing of shadows, this overhead does not depend directly on the number of qubits but rather grows exponentially with the number of noisy gates. The broad set of tools introduced in this work may be instrumental in exploiting near-term and early fault-tolerant quantum computers: We demonstrate in detailed numerical simulations a range of practical applications of quantum computers that will significantly benefit from our techniques.Comment: The first two authors contributed equally. 21 pages, 5 figure

    Quantum error mitigated classical shadows

    Get PDF
    Classical shadows enable us to learn many properties of a quantum state ρ with very few measurements. However, near-term and early fault-tolerant quantum computers will only be able to prepare noisy quantum states ρ and it is thus a considerable challenge to efficiently learn properties of an ideal, noise-free state ρid. We consider error mitigation techniques, such as probabilistic error cancelation (PEC), zero noise extrapolation (ZNE), and symmetry verification (SV), which have been developed for mitigating errors in single expected value measurements and generalize them for mitigating errors in classical shadows. We find that PEC is the most natural candidate and thus develop a thorough theoretical framework for PEC shadows with the following rigorous theoretical guarantees: PEC shadows are an unbiased estimator for the ideal quantum state ρid; the sample complexity for simultaneously predicting many linear properties of ρid is identical to that of the conventional shadows approach up to a multiplicative factor, which is the sample overhead due to error mitigation. Due to efficient postprocessing of shadows, this overhead does not depend directly on the number of qubits but rather grows exponentially with the number of noisy gates. The broad set of tools introduced in this work may be instrumental in exploiting near-term and early fault-tolerant quantum computers: we demonstrate in detailed numerical simulations a range of practical applications of quantum computers that will significantly benefit from our techniques

    Multicore Quantum Computing

    Full text link
    Any architecture for practical quantum computing must be scalable. An attractive approach is to create multiple cores, computing regions of fixed size that are well-spaced but interlinked with communication channels. This exploded architecture can relax the demands associated with a single monolithic device: the complexity of control, cooling and power infrastructure as well as the difficulties of cross-talk suppression and near-perfect component yield. Here we explore interlinked multicore architectures through analytic and numerical modelling. While elements of our analysis are relevant to diverse platforms, our focus is on semiconductor electron spin systems in which numerous cores may exist on a single chip. We model shuttling and microwave-based interlinks and estimate the achievable fidelities, finding values that are encouraging but markedly inferior to intra-core operations. We therefore introduce optimsed entanglement purification to enable high-fidelity communication, finding that 99.5%99.5\% is a very realistic goal. We then assess the prospects for quantum advantage using such devices in the NISQ-era and beyond: we simulate recently proposed exponentially-powerful error mitigation schemes in the multicore environment and conclude that these techniques impressively suppress imperfections in both the inter- and intra-core operations.Comment: 26 pages, 16 Figure

    Growing Random Graphs with Quantum Rules

    No full text
    International audienc
    corecore