3 research outputs found

    Rapid, early, and potent Spike-directed IgG, IgM, and IgA distinguish asymptomatic from mildly symptomatic COVID-19 in Uganda, with IgG persisting for 28 months.

    Get PDF
    INTRODUCTION: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. METHODS: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. RESULTS: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. DISCUSSION: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings

    Spike protein is a key target for stronger and more persistent T-cell responses—a study of mild and asymptomatic SARS-CoV-2 infection

    No full text
    Objectives: Understanding the immune response in very mild and asymptomatic COVID-19 is crucial for developing effective vaccines and immunotherapies, yet remains poorly characterized. This longitudinal study examined the evolution of interferon (IFN)-γ responses to SARS-CoV-2 peptides in 109 asymptomatic or mildly symptomatic Ugandan COVID-19 patients across 365 days and explored their association with antibody generation. Methods: T-cell responses to spike-containing clusters of differentiation (CD4)-S and CD8 nCoV-A (CD8-A) megapools, and the non-spike CD4-R and CD8 nCoV-B (CD8-B) megapools, were assessed and correlated with demographic and temporal variables. Results: SARS-CoV-2-specific IFN-γ responses were consistently detected in all peptide pools and time points, with the spike-targeted response exhibiting higher potency and durability than the non-spike responses. Throughout the entire 365-day infection timeline, a robust positive correlation was observed between CD4 T-cell responses to the spike-derived peptides and anti-spike immunoglobulin G antibody levels, underscoring their interdependent dynamics in the immune response against SARS-CoV-2; in contrast, CD8 T-cell responses exhibited no such correlation, highlighting their distinctive, autonomous role in defense. No meaningful variations in complete blood count parameters were observed between individuals with COVID-19 infection and those without, indicating clinical insignificance. Conclusions: This study highlights the dominant role of spike-directed T-cell responses in mild and asymptomatic disease and provides crucial longitudinal data from Sub-Saharan African settings. The findings provide valuable insights into the dynamics of T-cell responses and their potential significance in developing effective strategies for combating COVID-19
    corecore