27 research outputs found

    Characterization and virulence of Streptococcus agalactiae deficient in SaeRS of the two-component system

    Get PDF
    There are a variety of regulatory systems in bacteria, among which the two-component system (TCS) can sense external environmental changes and make a series of physiological and biochemical reactions, which is crucial for the life activities of bacteria. As a member of TCS, SaeRS is considered to be an important virulence factor in Staphylococcus aureus, but its function in tilapia (Oreochromis niloticus)-derived Streptococcus agalactiae remains unknown. To explore the role of SaeRS in regulating virulence in the two-component system (TCS) of S. agalactiae from tilapia, ΔSaeRS mutant strain and CΔSaeRS complementary strain were constructed by homologous recombination. The results showed that the abilities of growth and biofilm formation of ΔSaeRS strain were significantly decreased when cultured in a brain heart infusion (BHI) medium (P < 0.01). Also, the survival rate of the ΔSaeRS strain in blood was decreased when compared with the wild strain S. agalactiae THN0901. Under the higher infection dose, the accumulative mortality of tilapia caused by the ΔSaeRS strain was significantly decreased (23.3%), of which THN0901 and CΔSaeRS strains were 73.3%. The results of competition experiments in tilapia showed that the invasion and colonization abilities of the ΔSaeRS strain were also dramatically lower than those of the wild strain (P < 0.01). Compared with the THN0901, the mRNA expression levels of virulence factors (fbsB, sip, cylE, bca, etc.) in the ΔSaeRS strain were significantly down-regulated (P < 0.01). SaeRS is one of the virulence factors of S. agalactiae. It plays a role in promoting host colonization and achieving immune evasion during the infection of tilapia, which provides a basis for exploring the pathogenic mechanism of S. agalactiae infected with tilapia

    Transcriptomic Responses to Different Cry1Ac Selection Stresses in Helicoverpa armigera

    Get PDF
    Helicoverpa armigera can develop resistance to Bacillus thuringiensis (Bt), which threaten the long-term success of Bt crops. In the present study, RNAseq was employed to investigate the midgut genes response to strains with different levels of resistance (LF5, LF10, LF20, LF30, LF60, and LF120) in H. armigera. Results revealed that a series of differentially expressed unigenes (DEGs) were expressed significantly in resistant strains compared with the LF-susceptible strain. Nine trypsin genes, ALP2, were downregulated significantly in all the six resistant strains and further verified by qRT-PCR, indicating that these genes may be used as markers to monitor and manage pest resistance in transgenic crops. Most importantly, the differences in DEG functions in the different resistant strains revealed that different resistance mechanisms may develop during the evolution of resistance. The immune and detoxification processes appear to be associated with the low-level resistance (LF5 strain). Metabolic process-related macromolecules possibly lead to resistance to Cry1Ac in the LF10 and LF20 strains. The DEGs involved in the “proton-transporting V-type ATPase complex” and the “proton-transporting two-sector ATPase complex” were significantly expressed in the LF30 strain, probably causing resistance to Cry1Ac in the LF30 strain. The DEGs involved in binding and iron ion homeostasis appear to lead to high-level resistance in the LF60 and LF120 strains, respectively. The multiple genes and different pathways seem to be involved in Cry1Ac resistance depending on the levels of resistance. Although the mechanisms of resistance are very complex in H. armigera, a main pathway seemingly exists, which contributes to resistance in each level of resistant strain. Altogether, the findings in the current study provide a transcriptome-based foundation for identifying the functional genes involved in Cry1Ac resistance in H. armigera

    Hg selective adsorption on polypropylene-based hollow fiber grafted with polyacrylamide

    No full text
    A novel polypropylene hollow fiber membrane with a new function of selective adsorption of mercury ions in aqueous solutions was successfully prepared. The surface of the polypropylene hollow fiber membrane was initially modified with polydopamine by surface polymerization, and subsequently grafted with polyacrylamide (PAM) polymer brush via the surface initiated atom transfer radical polymerization (SI-ATRP) technique (thereafter named as PP-PAM). This study investigated the adsorption performance of Hg(II) ions by PP-PAM and the effect of various influencing factors on Hg(II) ion adsorption. The experiment indicated that the Hg(II) adsorption capacity of the PP-PAM increased with the increase of the pH, and the Hg(II) adsorption kinetics was consistent with the pseudo-second-order kinetic model. The adsorption isotherm followed the Langmuir model, with the maximum adsorption capacity calculated to be 0.854 mmol/g for Hg(II) ions. The adsorption study in multi-component system indicated that PP-PAM preferentially adsorbs Hg(II) over Pb(II) ions, with significant adsorption capacity difference of the two heavy metal ions. This study provided an efficient method for the preparation of the adsorptive polypropylene hollow fiber membrane, which expands its application for the selective removal of heavy metal ions

    Assessment of the lethal and sublethal effects by spinetoram on cotton bollworm.

    No full text
    Helicoverpa armigera is an universal pest around the world, which has recovered again in recent years because of the adjustment of cropping structure and resistance to Bacillus thuringiensis (Bt) in China. As a new insecticide spinetoram is extensively used to control many pest insects, including H. armigera. However the lethal and sublethal effects of spinetoram on cotton bollworm have not been assessed. In the present study, the toxicity of spinetoram against cotton bollworm was tested under laboratory conditions. Results demonstrated spinetoram showed an excellent activity against H. armigera, especially, against Bt (Cry1Ac) resistant H. armigera. Treatment with spinetoram at the doses of 0.19 mg/kg and 0.36 mg/kg (LC8 and LC20 after 24h oral exposure) significantly arrested the development of surviving larvae and caused significant decrease in larvae wet weight. Besides, the survivors after spinetoram treatments showed significant reduction of pupation ratio, pupal weight, emergence ratio, longevity and fecundity of adults. At same time, spinetoram treatments resulted in significant increase in the prepupal and pupal periods of survivors. In summary, these results showed that spinetoram could be used as an effective pesticide to control H. armigera, especially Cry1Ac-ressitacne, consequently to take both lethal and sublethal effects to cotton bollworm into consideration in cotton bollworm control strategy

    Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation

    Full text link
    A novel tri-block copolymer poly(oxopentanoate ethyl methacrylate)-block-poly(pyridyl disulfide ethyl acrylate)-block-poly(ethylene glycol acrylate) [poly(OEMA-b-PDEA-b-PEGA)], retaining active keto groups and pyridyl disulfide (PDS) side functionalities, was synthesized as a drug delivery vehicle using reversible addition-fragmentation chain transfer (RAFT) polymerization method. One mimic drug pyridine-2-thione (PT) was introduced into the monomer, PDEA for copolymerization. The other mimic drug O-benzylhydroxylamine (BHA) was conjugated with tri-block copolymer via efficient oxime coupling chemistry, followed by the attachment onto graphene via π-π stacking interaction to obtain a graphene/tri-block copolymer composite. 1H NMR, UV-vis absorption spectroscopy, fluorescence spectroscopy, gel permeation chromatography (GPC), atomic force microscope (AFM) and transmission electron microscope (TEM) were used to verify the successful step-wise preparation of the tri-block copolymer and drug loaded composite. In vitro release behaviors of BHA and PT from graphene/tri-block copolymer composite via dual drug release mechanisms were investigated. BHA can be released under acid environment, while PT will be released in the presence of reducing agents, such as dithiothreitol (DTT) or glutathione (GSH). It can be envisioned that this novel composite could be exploited as a novel intracellular drug delivery system via dual release mechanisms

    Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π-π Stacking interactions

    Full text link
    © 2015 Elsevier Ltd. All rights reserved. Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene\u27s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π-π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π-π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV-vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films

    Table_1_Specific Binding Protein ABCC1 Is Associated With Cry2Ab Toxicity in Helicoverpa armigera.PDF

    No full text
    <p>A pyramid strategy combining the crystal (Cry) 1A and 2A toxins in Bacillus thuringiensis (Bt) crops are active against many species of insects and nematode larvae. It has been widely used to delay pest adaption to genetically modified plants and broaden the insecticidal spectrum in many countries. Unfortunately, Cry2A can also bind with the specific receptor proteins of Cry1A. ATP-binding cassette (ABC) transporters can interact with Cry1A toxins as receptors in the insect midgut, and ABC transporter mutations result in resistance to Bt proteins. However, there is limited knowledge of the ABC transporters that specifically bind to Cry2Ab. Here, we cloned the ABCC1 gene in Helicoverpa armigera, which expressed at all larval stages and in nine different tissues. Expression levels were particularly high in fifth-instar larvae and Malpighian tubules. The two heterologously expressed HaABCC1 transmembrane domain peptides could specifically bind to Cry2Ab with high affinity levels. Moreover, transfecting HaABCC1 into the Spodoptera frugiperda nine insect cell significantly increased its mortality when exposed to Cry2Ab in vitro, and silencing HaABCC1 in H. armigera by RNA interference significantly reduced the mortality of larvae exposed to Cry2Ab in vivo. Altogether current results suggest that HaABCC1 serves as a functional receptor for Cry2Ab.</p

    Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm

    No full text
    <div><p>Crystalline (Cry) proteins from <i>Bacillus thuringiensis</i> (Bt) are used extensively for insect control in sprays and transgenic plants, but their efficacy is reduced by evolution of resistance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential mechanism of resistance in the invasive pest <i>Helicoverpa armigera</i>. Based on the concentration killing 50% of larvae (LC<sub>50</sub>) for a laboratory-selected resistant strain (LF120) divided by the LC<sub>50</sub> for its susceptible parent strain (LF), the resistance ratio was 1600 for Cry1Ac protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to activated toxin as well as to protoxin indicates reduced activation of protoxin is not a major mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK) or the chymotrypsin inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not significantly affect the LC<sub>50</sub> of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like proteases, but did not differ between strains for chymotrypsin-like proteases. The results here are consistent with previous reports indicating that reduced activation of protoxin is generally not a major mechanism of resistance to Bt proteins.</p></div
    corecore