161 research outputs found

    Application and Development Prospect of Mechanical Engineering Automation Technology

    Get PDF
    With the continuous development of social politics and economy, the level of modern science and technology in China is also improving. The backward manual labor mode is gradually replaced by the automation technology of mechanical engineering. Mechanical engineering automation not only improves the quality of products, but also saves labor costs, and promotes the development of China's modern economy and the progress of information technology. In order to better promote the application of mechanical automation technology in many fields and promote the development of mechanical automation technology, this paper discusses the application advantages and development prospects of mechanical automation technology, so as to make it better serve life and production

    Adaptive Feature Fusion Neural Network for Glaucoma Segmentation on Unseen Fundus Images

    Full text link
    Fundus image segmentation on unseen domains is challenging, especially for the over-parameterized deep models trained on the small medical datasets. To address this challenge, we propose a method named Adaptive Feature-fusion Neural Network (AFNN) for glaucoma segmentation on unseen domains, which mainly consists of three modules: domain adaptor, feature-fusion network, and self-supervised multi-task learning. Specifically, the domain adaptor helps the pretrained-model fast adapt from other image domains to the medical fundus image domain. Feature-fusion network and self-supervised multi-task learning for the encoder and decoder are introduced to improve the domain generalization ability. In addition, we also design the weighted-dice-loss to improve model performance on complex optic-cup segmentation tasks. Our proposed method achieves a competitive performance over existing fundus segmentation methods on four public glaucoma datasets.Comment: 17 pages, 11 figure

    CIEM: Contrastive Instruction Evaluation Method for Better Instruction Tuning

    Full text link
    Nowadays, the research on Large Vision-Language Models (LVLMs) has been significantly promoted thanks to the success of Large Language Models (LLM). Nevertheless, these Vision-Language Models (VLMs) are suffering from the drawback of hallucination -- due to insufficient understanding of vision and language modalities, VLMs may generate incorrect perception information when doing downstream applications, for example, captioning a non-existent entity. To address the hallucination phenomenon, on the one hand, we introduce a Contrastive Instruction Evaluation Method (CIEM), which is an automatic pipeline that leverages an annotated image-text dataset coupled with an LLM to generate factual/contrastive question-answer pairs for the evaluation of the hallucination of VLMs. On the other hand, based on CIEM, we further propose a new instruction tuning method called CIT (the abbreviation of Contrastive Instruction Tuning) to alleviate the hallucination of VLMs by automatically producing high-quality factual/contrastive question-answer pairs and corresponding justifications for model tuning. Through extensive experiments on CIEM and CIT, we pinpoint the hallucination issues commonly present in existing VLMs, the disability of the current instruction-tuning dataset to handle the hallucination phenomenon and the superiority of CIT-tuned VLMs over both CIEM and public datasets

    Karst collapse risk zonation and evaluation in Wuhan, China based on analytic hierarchy process, logistic regression, and insar angular distortion approaches

    Get PDF
    The current study presents a detailed assessment of risk zones related to karst collapse in Wuhan by analytical hierarchy process (AHP) and logistic regression (LR) models. The results showed that the LR model was more accurate with an area under the receiver operating characteristic (ROC) curve of 0.911 compared to 0.812 derived from the AHP model. Both models performed well in identifying high-risk zones with only a 3% discrepancy in area. However, for the medium-and low-risk classes, although the spatial distribution of risk zoning results were similar between two approaches, the spatial extent of the risk areas varied between final models. The reliability of both methods were reduced significantly by excluding the InSAR-based ground subsidence map from the analysis, with the karst collapse presence falling into the high-risk zone being reduced by approximately 14%, and karst collapse absence falling into the karst area being increased by approximately 6.5% on the training samples. To evaluate the practicality of using only results from ground subsidence maps for the risk zonation, the results of AHP and LR are compared with a weighted angular distortion (WAD) method for karst risk zoning in Wuhan. We find that the areas with relatively large subsidence horizontal gradient values within the karst belts are generally spatially consistent with high-risk class areas identified by the AHP-and LR-based approaches. However, the WAD-based approach cannot be used alone as an ideal karst collapse risk assessment model as it does not include geological and natural factors into the risk zonation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Inferring subsidence characteristics in Wuhan (China) through multitemporal InSAR and hydrogeological analysis

    Get PDF
    Wuhan (China) is facing severe consolidation subsidence of soft soil and karst collapse hazards. To quantitatively explore the extent and causes of land subsidence in Wuhan, we performed multitemporal interferometry (MTI) analysis using synthetic aperture radar (SAR) data from the TerraSAR-X satellite from 2013 to 2017 and the Sentinel-1A satellite from 2015 to 2017. MTI results reveal four major subsidence zones in Wuhan, namely, Hankou (exceeding −6 cm/yr), Xudong-Qingshan (−3 cm/yr), Baishazhou-Jiangdi (−3 cm/yr), and Jianshe-Yangluo (−2 cm/yr). Accuracy assessment using 106 levelling benchmarks and cross-validation between the two InSAR-based results indicate an overall root-mean-square error (RMSE) of 2.5 and 3.1 mm/yr, respectively. Geophysical and geological analyses suggest that among the four major subsiding zones, Hankou, Xudong-Qingshan, and Jianshe-Yangluo are located in non-karstic soft soil areas, where shallow groundwater (< 30 m) declines driven by engineering dewatering and industrial water depletion contribute directly to soft soil compaction. Subsidence in the Baishazhou-Jiangdi zone develops in the karst terrain with abundant underground caves and fissures, which are major natural factors for gradual subsidence and karst collapse. Spatial variation analysis of the geological conditions indicates that the stage of karst development plays the most important role in influencing kart subsidence, followed by municipal construction, proximity to major rivers, and overlying soil structure. Moreover, land subsidence in this zone is affected more via coupling effects from multiple factors. Risk zoning analysis integrating subsidence horizontal gradient, InSAR deformation rates, and municipal construction density show that the high-risk areas in Wuhan are mainly distributed in the Tianxingzhou and Baishazhou-Jiangdi zone, and generally spread along the metro lines. © 202

    How Criticality of Gene Regulatory Networks Affects the Resulting Morphogenesis under Genetic Perturbations

    Full text link
    Whereas the relationship between criticality of gene regulatory networks (GRNs) and dynamics of GRNs at a single cell level has been vigorously studied, the relationship between the criticality of GRNs and system properties at a higher level has remained unexplored. Here we aim at revealing a potential role of criticality of GRNs at a multicellular level which are hard to uncover through the single-cell-level studies, especially from an evolutionary viewpoint. Our model simulated the growth of a cell population from a single seed cell. All the cells were assumed to have identical GRNs. We induced genetic perturbations to the GRN of the seed cell by adding, deleting, or switching a regulatory link between a pair of genes. From numerical simulations, we found that the criticality of GRNs facilitated the formation of nontrivial morphologies when the GRNs were critical in the presence of the evolutionary perturbations. Moreover, the criticality of GRNs produced topologically homogenous cell clusters by adjusting the spatial arrangements of cells, which led to the formation of nontrivial morphogenetic patterns. Our findings corresponded to an epigenetic viewpoint that heterogeneous and complex features emerge from homogeneous and less complex components through the interactions among them. Thus, our results imply that highly structured tissues or organs in morphogenesis of multicellular organisms might stem from the criticality of GRNs.Comment: 34 pages, 17 figures, 1 tabl
    • …
    corecore