52 research outputs found

    Mimotope ELISA for Detection of Broad Spectrum Antibody against Avian H5N1 Influenza Virus

    Get PDF
    Science and Technology Foundation of Fujian Province [2009YZ0002]; National Natural Science Foundation of China [30901077]; National High Technology Research and Development Program [2010AA022801]Background: We have raised a panel of broad spectrum neutralizing monoclonal antibodies against the highly pathogenic H5N1 avian influenza virus, which neutralize the infectivity of, and afford protection against infection by, most of the major genetic groups of the virus evolved since 1997. Peptide mimics reactive with one of these broad spectrum H5N1 neutralizing antibodies, 8H5, were identified from random phage display libraries. Method: The amino acid residues of the most reactive 12mer peptide, p125 (DTPLTTAALRLV), were randomly substituted to improve its mimicry of the natural 8H5 epitope. Result: 133 reactive peptides with unique amino acid sequences were identified from 5 sub-libraries of p125. Four residues (2,4,5.9) of the parental peptide were preserved among all the derived peptides and probably essential for 8H5 binding. These are interspersed among four other residues (1,3,8,10), which exhibit restricted substitution and probably could contribute to binding, and another four (6,7,11,12) which could be randomly substituted and probably are not essential for binding. One peptide, V-1b, derived by substituting 5 of the latter residues is the most reactive and has a binding constant of 3.16x10(-9) M, which is 38 fold higher than the affinity of the parental p125. Immunoassay produced with this peptide is specifically reactive with 8H5 but not also the other related broad spectrum H5N1 avian influenza virus neutralizing antibodies. Serum samples from 29 chickens infected with H5N1 avian influenza virus gave a positive result by this assay and those from 12 uninfected animals gave a negative test result. Conclusion: The immunoassay produced with the 12 mer peptide, V1-b, is specific for the natural 8H5 epitope and can be used for detection of antibody against the broad spectrum neutralization site of H5N1 avian influenza virus

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

    No full text
    Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants

    Stormwater runoff pollution control performance of permeable concrete pavement and constructed wetland combined system: toward on-site reuse

    No full text
    Urban waterlogging and the deterioration of receiving water quality caused by stormwater runoff have become increasingly significant problems. Based on the concept of combining grey and green infrastructure, a combined permeable concrete pavement (PCP) and constructed wetland (CW) system has been developed to treat stormwater runoff and enable on-site reuse. The results showed that the removal rate of suspended solids (SS) by PCP ranged from 96.61 to 99.20%; however, the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in the effluent did not meet the standards required for rainwater reuse. For the combined PCP-CW system, the removal rates of COD, TN and TP by the CW were 48.45–75.12%, 47.26–53.05%, and 59.04–75.28%, respectively, under different hydraulic loading (HL) rates; thus, the effluent TN concentrations did not consistently meet the reuse standards. Further optimization of aeration in different parts of the CW revealed that aeration in the middle and front sections of the wetland had the most significant effect on pollutant removal, under which the TN concentrations in the effluent met the standard required for reuse. The effluent from the combined PCP-CW system was able to fully meet the stormwater reuse standards under these optimized conditions, and the reuse of urban stormwater runoff can therefore be realized. HIGHLIGHTS PCP-CW combined system based on the concept of combining grey-green infrastructure has been developed.; Runoff pollution control performances of PCP and PCP-CW were evaluated.; Micro-aeration can improve the pollution control performance of the PCP-CW system.; The effluent from PCP-CW can meet the rainwater reuse standard under optimized conditions.; A feasible way for on-site stormwater reuse is provided.

    Minocycline Induces Autophagy and Inhibits Cell Proliferation in LPS-Stimulated THP-1 Cells

    No full text
    Excessive activation and proliferation of inflammatory cell and uncontrolled release of cytokines and chemokines, also known as cytokine storm, is considered to be the main cause of sepsis. Accumulating evidence has indicated that autophagy may play an important role in regulating immune response and controlling excessive inflammation. Recent studies have showed that minocycline has immunomodulatory effects on cytokine and chemokine production. It has also been reported that minocycline can induce autophagy, suggesting that autophagy may be involved in the process of minocycline regulating inflammation and immune response. However, the precise mechanism is unclear. In the present study, we used enzyme-linked immunosorbent assays (ELISA) to measure the production of cytokines following minocycline treatment of lipopolysaccharide- (LPS-) stimulated THP-1 cells. Western blotting analysis was performed to confirm autophagy and the mTOR signal pathway. Cell proliferation was measured by WST-1 cell proliferation assay. We demonstrated that LPS induced autophagy in a tumor necrosis factor- (TNF-) α-mediated manner, and simultaneously, LPS induced the release of TNF-α to trigger inflammation and activated mammalian target of rapamycin (mTOR) to potentiate cell proliferation. Minocycline, which induces autophagy by inhibiting mTOR, suppresses cytokine production and cell proliferation and protects THP-1 cells from LPS toxicity. Further study demonstrated that there might be an intimate crosstalk between the inhibitor kappa B kinase (IKK)/nuclear factor-kappa B (NF-κB) signaling pathway and autophagy flux in modification of inflammatory responses. In addition, rapamycin, the mTOR inhibitor, has cooperative effect with minocycline on suppression of TNF-α release and induction of autophagy by repressing mTOR. Our data brought a novel clue to evaluate minocycline using as a potential therapeutic medicine for sepsis

    Recent advances in synthetic methods and applications of silver nanostructures

    No full text
    Abstract As the advanced functional materials, silver nanoparticles are potentially useful in various fields such as photoelectric, bio-sensing, catalysis, antibacterial and other fields, which are mainly based on their various properties. However, the properties of silver nanoparticles are usually determined by their size, shape, and surrounding medium, which can be modulated by various synthesis methods. In this review, the fabrication methods for synthesizing silver nanoparticles of different shapes and specific size are illustrated in detail. Besides, the corresponding properties and applications of silver nanoparticles are also discussed in this paper

    Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites

    No full text
    Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester
    • …
    corecore