31 research outputs found

    Unpaired Image Captioning via Scene Graph Alignments

    Full text link
    Most of current image captioning models heavily rely on paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph-based approach for unpaired image captioning. Our framework comprises an image scene graph generator, a sentence scene graph generator, a scene graph encoder, and a sentence decoder. Specifically, we first train the scene graph encoder and the sentence decoder on the text modality. To align the scene graphs between images and sentences, we propose an unsupervised feature alignment method that maps the scene graph features from the image to the sentence modality. Experimental results show that our proposed model can generate quite promising results without using any image-caption training pairs, outperforming existing methods by a wide margin.Comment: Accepted in ICCV 201

    Scene Graph Generation with External Knowledge and Image Reconstruction

    Full text link
    Scene graph generation has received growing attention with the advancements in image understanding tasks such as object detection, attributes and relationship prediction,~\etc. However, existing datasets are biased in terms of object and relationship labels, or often come with noisy and missing annotations, which makes the development of a reliable scene graph prediction model very challenging. In this paper, we propose a novel scene graph generation algorithm with external knowledge and image reconstruction loss to overcome these dataset issues. In particular, we extract commonsense knowledge from the external knowledge base to refine object and phrase features for improving generalizability in scene graph generation. To address the bias of noisy object annotations, we introduce an auxiliary image reconstruction path to regularize the scene graph generation network. Extensive experiments show that our framework can generate better scene graphs, achieving the state-of-the-art performance on two benchmark datasets: Visual Relationship Detection and Visual Genome datasets.Comment: 10 pages, 5 figures, Accepted in CVPR 201

    Exploiting Semantic Embedding And Visual Feature For Facial Action Unit Detection

    Get PDF
    Recent study on detecting facial action units (AU) has utilized auxiliary information (i.e., facial landmarks, relationship among AUs and expressions, web facial images, etc.), in order to improve the AU detection performance. As of now, no semantic information of AUs has yet been explored for such a task. As a matter of fact, AU semantic descriptions provide much more information than the binary AU labels alone, thus we propose to exploit the Semantic Embedding and Visual feature (SEV-Net) for AU detection. More specifically, AU semantic embeddings are obtained through both Intra-AU and Inter-AU attention modules, where the Intra-AU attention module captures the relation among words within each sentence that describes individual AU, and the Inter-AU attention module focuses on the relation among those sentences. The learned AU semantic embeddings are then used as guidance for the generation of attention maps through a cross-modality attention network. The generated cross-modality attention maps are further used as weights for the aggregated feature. Our proposed method is unique in that the semantic features are exploited as the first of this kind. The approach has been evaluated on three public AU-coded facial expression databases and has achieved a superior performance than the state-of-the-art peer methods

    Unsupervised Cross-lingual Image Captioning

    Full text link
    Most recent image captioning works are conducted in English as the majority of image-caption datasets are in English. However, there are a large amount of non-native English speakers worldwide. Generating image captions in different languages is worth exploring. In this paper, we present a novel unsupervised method to generate image captions without using any caption corpus. Our method relies on 1) a cross-lingual auto-encoding, which learns the scene graph mapping function along with the scene graph encoders and sentence decoders on machine translation parallel corpora, and 2) an unsupervised feature mapping, which seeks to map the encoded scene graph features from image modality to sentence modality. By leveraging cross-lingual auto-encoding, cross-modal feature mapping, and adversarial learning, our method can learn an image captioner to generate captions in different languages. We verify the effectiveness of our proposed method on the Chinese image caption generation. The comparisons against several baseline methods demonstrate the effectiveness of our approach.Comment: 8 page

    Learning the Visualness of Text Using Large Vision-Language Models

    Full text link
    Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will enable text-to-image retrieval and generation models to augment text with relevant images. This is particularly challenging with long-form text as text-to-image generation and retrieval models are often triggered for text that is designed to be explicitly visual in nature, whereas long-form text could contain many non-visual sentences. To this end, we curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP by modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E. Project webpage: https://gaurav22verma.github.io/text-visualness/Comment: Accepted at EMNLP 2023 (Main, long); 9 pages, 5 figure

    Delving into Out-of-Distribution Detection with Vision-Language Representations

    Full text link
    Recognizing out-of-distribution (OOD) samples is critical for machine learning systems deployed in the open world. The vast majority of OOD detection methods are driven by a single modality (e.g., either vision or language), leaving the rich information in multi-modal representations untapped. Inspired by the recent success of vision-language pre-training, this paper enriches the landscape of OOD detection from a single-modal to a multi-modal regime. Particularly, we propose Maximum Concept Matching (MCM), a simple yet effective zero-shot OOD detection method based on aligning visual features with textual concepts. We contribute in-depth analysis and theoretical insights to understand the effectiveness of MCM. Extensive experiments demonstrate that MCM achieves superior performance on a wide variety of real-world tasks. MCM with vision-language features outperforms a common baseline with pure visual features on a hard OOD task with semantically similar classes by 13.1% (AUROC). Code is available at https://github.com/deeplearning-wisc/MCM.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022
    corecore