2 research outputs found

    Frequency-dependent transition in power-law rheological behavior of living cells

    No full text
    Living cells are active viscoelastic materials exhibiting diverse mechanical behaviors at different time scales. However, dynamical rheological characteristics of cells in frequency range spanning many orders of magnitude, especially in high frequencies, remain poorly understood. Here, we show that a self-similar hierarchical model can capture cell's power-law rheological characteristics in different frequency scales. In low-frequency scales, the storage and loss moduli exhibit a weak power-law dependence on frequency with same exponent. In high-frequency scales, the storage modulus becomes a constant, while the loss modulus shows a power-law dependence on frequency with an exponent of 1.0. The transition between low- and high-frequency scales is defined by a transition frequency based on cell's mechanical parameters. The cytoskeletal differences of different cell types or states can be characterized by changes in mechanical parameters in the model. This study provides valuable insights into potentially using mechanics-based markers for cell classification and cancer diagnosis.Agency for Science, Technology and Research (A*STAR)Nanyang Technological UniversityPublished versionG.-K.X. acknowledges the National Natural Science Foundation of China (grant nos. 12122210 and 12072252), and H.G. acknowledges the research start-up grant (002479-00001) from Nanyang Technological University and the Agency for Science, Technology and Research (A*STAR)
    corecore