20 research outputs found

    The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    No full text
    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations. Valence-space metaphors might be grounded in attention allocation

    Chinese Children with Congenital and Acquired Blindness Represent Concrete Concepts in Vertical Space through Tactile Perception

    No full text
    Many studies have tested perceptual symbols in conceptual processing and found that perceptual symbols contain experiences from multisensory channels. However, whether the disability of one sensory channel affects the processing of the perceptual symbols and then affects conceptual processing is still unknown. This line of research would extend the perceptual symbol theory and have implications for language rehabilitation and mental health for people with disabilities. Therefore, the present study filled in this gap and tested whether Chinese children with congenital and acquired blindness have difficulty in recruiting perceptual symbols in the processing of concrete concepts. Experiment 1 used the word-pair-matching paradigm to test whether blind children used vertical space information in understanding concrete word pairs. Experiment 2 used the word-card-pairing paradigm to test the role of tactile experiences in the processing of concrete concepts for blind children. Results found that blind children automatically activated the spatial information of referents in the processing of concepts through the tactile sensory channel even when the visual sensory channel was disabled. This finding supported the compensatory phenomenon of other sensory channels in conceptual representation. In addition, the difference between elementary school blind children and middle school blind children in judging the spatial position of concrete words also indicated the vital influence of perceptual experiences on perceptual symbols in conceptual representation. Interestingly, there were no significant differences between children with congenital or acquired blindness. This might suggest that the compensatory of other sensory channels did not have a sensitive period. This study not only provided new evidence for the perceptual symbol theory but also found that perceptual symbols could be developed by a compensatory mechanism. This compensatory mechanism can be used to develop a rehabilitation program for improving language learning in blind children. Improved language ability in blind children will also improve their mental health problems caused by difficulties in social interaction (e.g., social anxiety)

    Affective valence facilitates spatial detection on vertical axis: shorter time strengthens effect

    Get PDF
    Affective concepts can be described in terms of space, which is known as the valence-space metaphor. Previous studies have not investigated either the specifics of this metaphor on the transverse and vertical axes or the time course of this metaphoric association. With Chinese participants, we used a spatial cue task to study the valence-space metaphor on the transverse (left-and-right; Experiment 1A) and vertical (upper-and-lower; Experiment 1B) axes. After being shown an affective word and asked to keep it in mind, the participants were given a spatial target detection task. The results revealed that the metaphoric association was only found on the vertical axis. More specifically, keeping a positive word in mind facilitated the detection of the upper target, but no such effect was found in the detection of the lower target. Furthermore, in Experiment 2, we manipulated the duration of time (100 ms, 500 ms, and 1000 ms) between the offset of the affective word and the onset of the spatial target (i.e., interstimulus intervals, ISI), to test the dynamic time course of the valence-space metaphor on the vertical axis. The results showed that when ISI was 100ms, keeping a positive word in mind facilitated the detection of the upper target and keeping a negative word in mind facilitated the detection of the lower target. However, when the ISI was 500 or 1000 ms, keeping a positive word in mind facilitated the detection of the upper target and no such effect was found in the detection of the lower target, indicating that ISI might be important in the valence-space metaphoric association. In sum, we found that the processing of affective valence activated the vertical spatial axis but not the transverse axis. Further, the association might be modulated by ISI, indicating that it may be related to attention allocation

    Mean amplitudes (μV) and standard errors (<i>SE</i>) in four different trial types.

    No full text
    <p>Mean amplitudes (μV) and standard errors (<i>SE</i>) in four different trial types.</p

    Mean amplitude for four different trial types at nine electrode sites.

    No full text
    <p>Mean amplitude for four different trial types at nine electrode sites.</p

    Switch costs occur at lemma stage when bilinguals name digits: evidence from language-switching and event-related potentials

    Get PDF
    Switch costs are generally found in language switching tasks. However, the locus where switch costs occur during bilingual language production remains unclear. Several studies that used a cued language-switching paradigm have attempted to investigate this question in bilingual language production, but researchers have not reached a consensus. Moreover, we are interested in where switch costs occur when language selection occurs after lemma activation. Previous studies have not investigated this question because most previous studies presented language cues before or along with the stimuli. Therefore, we used a modified cued language-switching paradigm with a combined event-related potential (ERP) technique to explore the locus of swtich costs during bilingual language production. The cue and stimulus were separated and presented in two different presentation sequences in which Indonesian-Chinese bilingual speakers were instructed to name digits in their L1 or L2 according to the color of the cue. The ERPs related to the cue and the stimulus for two presentation sequences were measured. In the stimulus-cue sequence, the analysis that was time-locked to cues revealed a reversed switch cost as early as 220 ms after the cue onset; furthermore, a switch cost was shown in L1 with a late stage post-cue onset. The results suggested that when language selection occurred after lemma activation, the switch costs mainly occurred at the lemma selection stage. In the cue-stimulus sequence, the analysis that was time-locked to cues did not reveal significant main effects of switching, whereas the ERPs that were time-locked to digits yielded a switch cost, again indicating that switch costs mainly occurred at the lemma selection stage rather than at the language task schema competition stage. Overall, our results indicated that when bilinguals read digits aloud in the language switching task, switch costs mainly occurred at the lemma selection stage

    Mean reaction times (ms), accuracy (ACC), and standard errors (<i>SE</i>) for memory task in Experiment 2.

    No full text
    <p>Mean reaction times (ms), accuracy (ACC), and standard errors (<i>SE</i>) for memory task in Experiment 2.</p

    Reaction times for location detection task in Experiment 1.

    No full text
    <p>Reaction times for location detection task in Experiment 1.</p

    Mean reaction times (ms), accuracy (ACC), and standard errors (<i>SE</i>) for direction discrimination task in Experiment 2.

    No full text
    <p>Mean reaction times (ms), accuracy (ACC), and standard errors (<i>SE</i>) for direction discrimination task in Experiment 2.</p

    Voltage scalp maps of the P200 for four different trial types.

    No full text
    <p>Voltage scalp maps of the P200 for four different trial types.</p
    corecore