14 research outputs found

    Fault Diagnosis for RV Reducer Based on Residual Network

    No full text

    Numerical Simulation of Traction in Rolling/Sliding Contacts

    No full text

    Boundary lubrication in transient elliptical contact: Part 1—Theoretical formulation and results

    No full text
    The transient elliptical contacts in boundary lubrication widely exist in modern mechanical systems with high durability. However, little attention has been paid to the squeeze effect of fluid film in this condition. A deterministic model which combines the contact mechanics with the pure squeeze lubrication model has been developed with the aim of understanding the squeeze effect of fluid film under the transient boundary lubrication. The leakage coefficient was introduced to capture the fluid leakage of rough surfaces. The squeeze effect of trapped fluid film was confirmed through comparing the fluid film stiffness in boundary lubrication with that of the elastohydrodynamic lubrication. Additionally, the effects of fluid film entrapment/leakage on the boundary lubrication performance were numerically analyzed during transients. The load capacity of the squeeze films is built up due to the trapped fluid film in the micro-valleys, which can be significantly affected by the interfacial shear coefficient of the boundary films. The simulation results show a good agreement with the experiments and justify the present numerical model is feasible in the boundary lubrication regime

    Effect of Multifactor Interaction on the Accuracy of RV Reducers

    No full text
    The rotary vector (RV) reducer is one of the widely used mechanical components in industrial systems, specifically in robots. The stability of the transmission performance of the RV reducer is crucial for the efficient operation of industrial equipment. The manufacturing and assembly errors of various components of the RV reducer during the production process are important factors that affect the transmission performance. However, in previous research work, the coupling effect of multiple errors on the transmission accuracy of RV reducer has not been fully considered. Furthermore, a vague relationship between system transmission errors and various errors also has not been thoroughly discussed, which presents a challenge to analyze and optimize the errors of components using the simulation technology of virtual prototype. Therefore, we propose a novel approach to use the response surface method (RSM) to investigate the transmission accuracy of RV reducer. Firstly, based on the constructed virtual prototype of RV reducer, the individual effects of different original errors on the overall transmission error are analyzed. Secondly, a response surface approximation model using RSM is constructed to analyze the effect of multiple error interactions on the transmission accuracy of the RV reducer, and the potential functional relationship between multiple error factors and the overall transmission error is also explored. Finally, the authenticity of the proposed approach is verified by setting up some comparative experiments. This study provides a reference for the efficient analysis and optimization of the transmission accuracy of RV reducers

    Analysis of electromechanical coupling vibration characteristics of motor-gear system based on bond graph theory

    No full text
    In recent years, there has been a growing demand in the field of engineering systems for research on the vibration response of motor-gear systems under non-steady state conditions. However, conventional modeling and simulation techniques are primarily restricted to systems within a single energy domain. When dealing with intricate electromechanical coupling systems, the modeling process becomes increasingly intricate. Consequently, this study adopts bond graph theory as the foundation for analyzing the vibration characteristics of motor-gear coupling systems. In addressing the vibration issue of the motor-gear transmission system, a nonlinear bond graph model is established that takes into account the time-varying mesh stiffness, static errors, and tooth surface friction, among other nonlinear factors. Then, according to the coupling relationship between motor mechanical systems and electrical systems, the electromechanical coupling dynamic model of the motor-gear system is established using the method of bond graph. In addition, the state equation of the system is derived based on the bond graph model. Finally, the system is simulated using 20-sim software, and the electromechanical coupled vibration characteristics of the simulation results are analyzed. This article lays the foundation for the design and analysis of motor-gear coupling systems and multi-energy domain complex systems

    Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal

    No full text
    Among friction modifier lubricant additives, molybdenum dialkyldithiocarbamate (MoDTC) provides excellent friction behavior in boundary lubricated tribocontacts. It is well established that the low friction obtained with MoDTC is as a result of the formation of lattice structure MoSâ‚‚ nanosheets. However, the relationship between the molybdenum species quantity, its distribution on the contact surface, and the friction behavior is not yet fully understood. In this work, Raman microscopy and atomic force microscopy (AFM) have been used with the aim of understanding the link between the friction behavior and the MoDTC/ZDDP tribofilm formation and removal. Tribotests were coupled with a collection of ex-situ Raman intensity maps to analyze the MoSâ‚‚ tribofilm buildup. Post-test AFM analyses were implemented on the ball wear scar to acquire the average MoDTC/ZDDP tribofilm thickness. In-situ Raman spectra analyses were carried out to detect the MoSâ‚‚ tribofilm removal. A good correlation was achieved between the friction coefficient measurements and Raman maps when using a linear relationship between the microscopic friction and the local amount of MoSâ‚‚ tribofilm. After a rapid increase, the average MoDTC/ZDDP tribofilm thickness levels out to a steady state as the friction drop ceases. The removal rate of MoSâ‚‚ from tribofilms, obtained at different temperatures, suggests that the MoSâ‚‚ tribofilms are much easier to remove from tribocontacts compared to antiwear ZDDP tribofilms. This is the first study that sets out a framework to link MoSâ‚‚ amount and coverage to the friction behavior, providing the basis for developing numerical models capable of predicting friction by taking into account tribochemistry processes
    corecore