31 research outputs found

    Uterine Microbiota of Dairy Cows With Clinical and Subclinical Endometritis

    Get PDF
    The objective of this study was to characterize the uterine microbiota of dairy cows with clinical and subclinical endometritis and to identify the potential bacterial genera as well as their interactions associated with uterine disease. Uterine flush samples (n = 27) were collected from 13 healthy, 5 subclinical endometritic (SE), and 9 clinical endometritic (CE) cows at 30 days postpartum. Microbial DNA from uterine flush samples was subjected to sequencing of the 16S rRNA gene on the Illumina MiSeq platform. The uterine microbiota of healthy, SE, and CE cows had similarly complex microbial diversity, and shared 293 of 445 operational taxonomic units. However, endometritic and healthy cows could be discriminated by the relative abundance of bacterial genera. In CE cows, the uterine microbiota was characterized by increased abundance of Fusobacterium and unique presence of Trueperella and Peptoniphilus. For SE cows, known intrauterine pathogens were almost absent and the uterine microbiota was characterized by enrichment of Lactobacillus and Acinetobacter. Analysis of correlations between bacterial genera showed that the uterine microbiota exhibited two co-occurrence groups (i.e., the Lactococcus and the Fusobacterium COGs), indicating that the synergistic effect by co-occurred bacteria may be an important aspect of pathogenesis. Our findings support that common uterine pathogens are not associated with subclinical endometritis at 30 days postpartum and indicate the need of investigating the role of commensal bacteria such as Lactobacillus, and Acinetobacter in the inflammatory process of uterine endometrium

    Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications

    Full text link

    Reconstruction of chaotic signals with applications to chaos-based communications

    No full text
    This book provides a systematic review of the fundamental theory of signal reconstruction and the practical techniques used in reconstructing chaotic signals. Specific applications of signal reconstruction methods in chaos-based communications are expounded in full detail, along with examples illustrating the various problems associated with such applications.The book serves as an advanced textbook for undergraduate and graduate courses in electronic and information engineering, automatic control, physics and applied mathematics. It is also highly suited for general nonlinear scientists who w

    Generating New Chinese Fonts Based on Wavelet Transforms

    No full text
    Based on the cubic B-spline curve, new Chinese fonts are generated by wavelet transforms in this paper. The outlines of Chinese fonts are first transformed into B-spline curves. Then, using wavelet transforms, the control points of each curve are decomposed into hierarchies containing the detailed features of the Chinese fonts. Using the synthesis procedure of wavelet transforms, new fonts can be generated by modifying details at selected hierarchies. Keywords —Multiresolution analysis, B-spline wavelets, hierarchical decomposition, Chinese fonts. 1

    Channel Equalization for Chaos-based Communication Systems

    No full text
    Abstract — The performance of chaos-based communication systems is greatly affected by non-ideal channel characteristics such as bandwidth limitation, distortion and additive noise. Systems that rely on coherent detection methods are particularly vulnerable because the process of regenerating the chaos basis signals in the detector involves a rather fragile process known as “chaos synchronisation”. If channel effects can be minimized, the performance of chaos-based communication systems can be enhanced. In this paper, we study the equalization of the channel for chaotic communication systems. A channel equalizer is designed and realized by a modified recurrent neural network (RNN) for eliminating channel distortions. Results from computer simulations demonstrate the effectiveness of the equalizer as applied to a chaotic communication system. I

    Comparative mitogenomics and phylogenetic analyses of the genus Menida (Hemiptera, Heteroptera, Pentatomidae)

    No full text
    In order to explore the genetic diversity and phylogenetic relationship of the genus Menida Motschulsky, 1861 and reveal the molecular evolution of the family Pentatomidae, subfamily Pentatominae, complete mitochondrial genomes of three species of Menida were sequenced, and the phylogenetic relationships of tribes within the subfamily Pentatominae were studied based on these results. The mitochondrial genomes of Menida musiva (Jakovlev, 1876), M. lata Yang, 1934, and M. metallica Hsiao & Cheng, 1977 were 16,663 bp, 16,463 bp, and 16,418 bp, respectively, encoding 37 genes and including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes, and a control region. The mitochondrial genome characteristics of Menida were compared and analyzed, and the phylogenetic tree of the Pentatominae was constructed based on the mitochondrial genome datasets using Bayesian inference (BI) and maximum likelihood (MI) methods. The results showed that gene arrangements, nucleotide composition, codon preference, gene overlaps, and RNA secondary structures were highly conserved within the Menida and had more similar characteristics in Pentatominae. The phylogenetic analysis shows a highly consistent topological structure based on BI and ML methods, which supported that the genus Menida belongs to the Pentatominae and is closely related to Hoplistoderini. The examined East Asian species of Menida form a monophyletic group with the internal relationships: (M. musiva + (M. lata + (M. violacea + M. metallica))). In addition, these results support the monophyly of Eysarcorini and Strachiini. Placosternum and Cappaeini are stable sister groups in the evolutionary branch of Pentatominae. The results of this study enrich the mitochondrial genome databases of Pentatominae and have significance for further elucidation of the phylogenetic relationships within the Pentatominae

    The complete mitochondrial genome of Pentatoma rufipes (Hemiptera, Pentatomidae) and its phylogenetic implications

    Get PDF
    Pentatoma rufipes (Linnaeus, 1758) is an important agroforestry pest widely distributed in the Palaearctic region. In this study, we sequence and annotate the complete mitochondrial genome of P. rufipes and reconstruct the phylogenetic trees for Pentatomoidea using existing data for eight families published in the National Center for Biotechnology Information database. The mitogenome of P. rufipes is 15,887-bp-long, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region, with an A+T content of 77.7%. The genome structure, gene order, nucleotide composition, and codon usage of the mitogenome of P. rufipes were consistent with those of typical Hemiptera insects. Among the protein-coding genes of Pentatomoidea, the evolutionary rate of ATP8 was the fastest, and COX1 was found to be the most conservative gene in the superfamily. Substitution saturation assessment indicated that neither transition nor transversion substitutions were saturated in the analyzed datasets. Phylogenetic analysis using the Bayesian inference method showed that P. rufipes belonged to Pentatomidae. The node support values based on the dataset concatenated from protein-coding and RNA genes were the highest. Our results enrich the mitochondrial genome database of Pentatomoidea and provide a reference for further studies of phylogenetic systematics
    corecore