4 research outputs found

    High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate?

    No full text
    This work examines the effects of two problematic trends in diesel passenger car emissions—increasing NO2/NOx ratio by conversion of NO into NO2 in catalysts and a disparity between the emission limit and the actual emissions in everyday driving—on ambient air quality in Prague. NO2 concentrations were measured by 104 membrane-closed Palmes passive samplers at 65 locations in Prague in March–April and September–October of 2019. NO2 concentrations measured by city stations during those periods were comparable with the average values during 2016–2019. The average measured NO2 concentrations at the selected locations, after correcting for the 18.5% positive bias of samplers co-located with a monitoring station, were 36 µg/m3 (range 16–69 µg/m3, median 35 µg/m3), with the EU annual limit of 40 µg/m3 exceeded at 32% of locations. The NO2 concentrations have correlated well (R2 = 0.76) with the 2019 average daily vehicle counts, corrected for additional emissions due to uphill travel and intersections. In addition to expected “hot-spots” at busy intersections in the city center, new ones were identified, i.e., along a six-lane road V Holešovičkách. Comparison of data from six monitoring stations during 15 March–30 April 2020 travel restrictions with the same period in 2016–2019 revealed an overall reduction of NO2 and even a larger reduction of NO. The spatial analysis of data from passive samplers and time analysis of data during the travel restrictions both demonstrate a consistent positive correlation between traffic intensity and NO2 concentrations along/near the travel path. The slow pace of NO2 reductions in Prague suggests that stricter vehicle NOx emission limits, introduced in the last decade or two, have so far failed to sufficiently reduce the ambient NO2 concentrations, and there is no clear sign of remedy of Dieselgate NOx excess emissions

    Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells

    No full text
    The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests

    Molecular Responses in THP-1 Macrophage-Like Cells Exposed to Diverse Nanoparticles

    Get PDF
    In the body, engineered nanoparticles (NPs) may be recognized and processed by immune cells, among which macrophages play a crucial role. We evaluated the effects of selected NPs [NM-100 (TiO2), NM-110 (ZnO), NM-200 (SiO2), and NM-300 K (Ag)] on THP-1 macrophage-like cells. The cells were exposed to subcytotoxic concentrations of NPs (1−25 µg/mL) and the expression of immunologically relevant genes (VCAM1, TNFA, CXCL8, ICAM1, CD86, CD192, and IL1B) was analyzed by RT-qPCR. The expression of selected cytokines, growth factors and surface molecules was assessed by flow cytometry or ELISA. Generation of reactive oxygen species and induction of DNA breaks were also analyzed. Exposure to diverse NPs caused substantially different molecular responses. No significant effects were detected for NM-100 treatment. NM-200 induced production of IL-8, a potent attractor and activator of neutrophils, growth factors (VEGF and IGF-1) and superoxide. NM-110 triggered a proinflammatory response, characterized by the activation of transcription factor NF-κB, an enhanced production of proinflammatory cytokines (TNF-α) and chemokines (IL-8). Furthermore, the expression of cell adhesion molecules VCAM-1 and ICAM-1 and hepatocyte growth factor (HGF), as well as superoxide production and DNA breaks, were affected. NM-300 K enhanced IL-8 production and induced DNA breaks, however, it decreased the expression of chemokine receptor (CCR2) and CD86 molecule, indicating potential immunosuppressive activity. The toxicity of ZnO and Ag NPs was probably caused by their intracellular dissolution, as indicated by transmission electron microscopy imaging. The observed effects in macrophages might further influence both innate and adaptive immune responses by promoting neutrophil recruitment via IL-8 release and enhancing the adhesion and stimulation of T cells by VCAM-1 and ICAM-1 expression
    corecore