27 research outputs found

    Spatial-temporal variations of short-lived mesoscale eddies and their environmental effects

    Get PDF
    Mesoscale eddies (MEs) affect the transport and redistribution of oceanic matter and energy. The long-lived and long-distance propagation of individual eddies has garnered extensive attention; however, short-lived MEs (< 7 days) have been widely overlooked. In this study, the basic features of short-lived MEs and their spatial-temporal variations in a tropical eddy-rich region were extracted and analyzed for the first time. Short-lived cyclonic and anticyclonic eddies (CEs/AEs) were found to be widespread in two eddy belts in the tropical region of the western Pacific warm pool (WPWP). The CEs and AEs were formed by the shear instability between large-scale circulations and were distributed on both sides of the North Equatorial Countercurrent, with significant differences in spatial distribution. The variations in sea surface temperature, mixed layer depth, and surface chlorophyll-a concentration in the core of the WPWP were spatially and temporally related to the development of the two eddy belts. This new insight into short-lived MEs in the tropical region contributes to our current understanding of ocean eddies. The potential impacts of short-lived MEs on climate change, global air–sea interactions, and tropical cyclone formation should receive adequate attention and further assessment in future research

    Experimental Study on Silty Seabed Liquefaction and Its Impact on Sediment Resuspension by Random Waves

    No full text
    Seabed liquefaction and sediment resuspension under wave loading are key issues in marine engineering, but are usually regarded as independent processes (instead of coexisting and interacting processes). Here, we analyzed random wave-induced seabed liquefaction and its impact on sediment resuspension using flume experiments. Results show that in a nonliquefaction scenario, excess pore pressure in the seabed oscillates with wave fluctuations, but pressure accumulation is low, while a consistent upward pressure gradient promotes sediment suspension. Wave-induced shear stress was the key driver of sediment resuspension in a nonliquefaction scenario. In the liquefied state, waves with different amplitudes differently responded to excess pore pressure; small-amplitude waves accumulated pressure, while large-amplitude waves dissipated it. Liquefied soil formed mud waves, creating elliptical motion along with random waves. Seabed liquefaction accelerated sediment resuspension in the following ways: reducing soil critical shear stress; forming seepage channels inside the seabed; forming mud waves, resulting in increased turbulent kinetic energy; dissipating excess pore pressure and releasing porewater, expelling fine-grained sediment from the liquefied soil. Our study reveals the variation in excess pore pressure in silty seabed under random waves and its effect on sediment resuspension, which is significant for understanding soil liquefaction and sediment movement of silt

    An optimal statistical regression model for predicting wave-induced equilibrium scour depth in sandy and silty seabeds beneath pipelines

    Get PDF
    Equilibrium scour depth (S) of seabed is critical to the safety of offshore pipelines which is one of the most important topics in ocean engineering. Compared to sands, few experiments have been done for silty seabed. In the present work, scour experiments under wave-only action were performed for both sandy and silty seabeds. Together with the data from literature, the most abundant dataset at the present stage is established. Based on this, two practical formulas for S were obtained with adaptive robust regression (ARR) from a data-driven perspective. One is for sands only that is related to the Keulegan–Carpenter (KC) number, pipeline-seabed gap and grain size of sands. The other is a more generalized model for both sands and silts, which is related to the KC number and sediment type that is distinguished by introducing a dummy variable. The formulas outperform the commonly-used process-based and data-driven models while also showing good interpretations in physical meaning. For silts from the Yellow River Delta, the S in silts is generally 1.2 times of that in sands. The better performance is attributed to (1) the outliers in the dataset are effectively handled with ARR; (2) the most abundant dataset

    Coastal Dam Inundation Assessment for the Yellow River Delta: Measurements, Analysis and Scenario

    No full text
    Coastal dams along the Yellow River Delta are built to prevent seawater intrusion. However, land subsidence caused by significant oil, gas and brine extraction, as well as sediment compaction, could exacerbate the flooding effects of sea-level rise and storm surge. In order to evaluate the coastal dam vulnerability, we combined unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR) with small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) results to generate an accurate coastal dam digital elevation model (DEM) over the next 10, 30 and 80 years. Sea-level simulation was derived from the relative sea-level rise scenarios published by the Intergovernmental Panel on Climate Change (IPCC) and local long-term tide gauge records. Assuming that the current rate of dam vertical deformation and sea-level rise are linear, we then generated different inundation scenarios by the superposition of DEMs and sea-levels at different periods by way of a bathtub model. We found that the overtopping event would likely occur around Year 2050, and the northern part of the dam would lose its protective capability almost entirely by the end of this century. This article provides an alternative cost-effective method for the detection, extraction and monitoring of coastal artificial infrastructure

    Experimental Study on the Influence of Pipeline Vibration on Silty Seabed Liquefaction

    No full text
    Free-spanning submarine pipelines are usually affected by vortex-induced vibration (VIV). Such vibration could influence the liquefaction of the supporting soil at both ends of the free spans and could have catastrophic consequences, including the failure of the local seabed and the displacing, sinking, or floating of pipelines. The influence of pipeline vibration on soil liquefaction has not been studied sufficiently. Therefore, we explored the influence of vortex-induced pipeline vibration on the excess pore pressure of silty soil around a pipeline using flume experiments. Our results showed that pipeline vibration could induce the buildup of excess pore-water pressure, even without wave loading. A fully liquefied zone was found close to the pipeline, where excess pore pressure reached the soil liquefaction criterion, which was surrounded by a partially liquefied zone. The extent of liquefaction depended on the vibration conditions and the weight and burial depth of the pipeline. The pipeline vibration amplitude increased after soil liquefaction. Unlike wave-induced liquefaction, pipeline-induced vibration liquefaction occurred at a critical value smaller than the initial mean normal effective stress. Considering the possibility of pipeline-vibration-induced seabed liquefaction, conventional approaches could underestimate the potential risks to pipeline stability and result in unsafe maintenance practices
    corecore