2 research outputs found

    Electrical Double Layer at Various Electrode Potentials: A Modification by Vibration

    No full text
    This paper proposes a vibration model of ions as an improvement over the conventional Gouy–Chapman–Stern theory, which is used to model the electrical double layer capacitance and to study the ionic dynamics at electrode/electrolyte interfaces. Although the Gouy–Chapman–Stern model is successful for small applied potentials, it fails to explain the observed behavior at larger potentials, which are becoming increasingly important as materials with high charge injection capacities are developed. A time-dependent study on ionic transport indicates that ions vibrate near the electrode surface in response to the applied electric field. This vibration allows us to correctly predict the experimentally observed decreasing differential capacitance at high electrode potential. This new model elucidates the mechanism behind the ionic dynamics at solid–electrolyte interfaces, providing useful insight that may be applied to many electrochemical systems in energy storage, photoelectrochemical cells, and biosensing

    Spin–Orbit Interaction in a Two-Dimensional Hole Gas at the Surface of Hydrogenated Diamond

    No full text
    Hydrogenated diamond possesses a unique surface conductivity as a result of transfer doping by surface acceptors. Yet, despite being extensively studied for the past two decades, little is known about the system at low temperature, particularly whether a two-dimensional hole gas forms at the diamond surface. Here we report that (100) diamond, when functionalized with hydrogen, supports a <i>p</i>-type spin-3/2 two-dimensional surface conductivity with a spin–orbit interaction of 9.74 ± 0.1 meV through the observation of weak antilocalization effects in magneto-conductivity measurements at low temperature. Fits to 2D localization theory yield a spin relaxation length of 30 ± 1 nm and a spin-relaxation time of ∼0.67 ± 0.02 ps. The existence of a 2D system with spin orbit coupling at the surface of a wide band gap insulating material has great potential for future applications in ferromagnet–semiconductor and superconductor–semiconductor devices
    corecore