3 research outputs found

    STereotactic Arrhythmia Radioablation (STAR): the Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary consortium (STOPSTORM.eu) and review of current patterns of STAR practice in Europe

    Full text link
    The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs

    Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia

    Get PDF
    Background: Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment. Materials and methods: We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes. Results: In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm. Conclusions: Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion

    STereotactic Arrhythmia Radioablation (STAR): the Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary consortium (STOPSTORM.eu) and review of current patterns of STAR practice in Europe.

    Get PDF
    The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs
    corecore