231 research outputs found

    Experimental Assessment on the Hysteretic Behavior of a Full-Scale Traditional Chinese Timber Structure Using a Synchronous Loading Technique

    Get PDF
    In traditional Chinese timber structures, few tie beams were used between columns, and the column base was placed directly on a stone base. In order to study the hysteretic behavior of such structures, a full-scale model was established. The model size was determined according to the requirements of an eighth grade material system specified in the architectural treatise Ying-zao-fa-shi written during the Song Dynasty. In light of the vertical lift and drop of the test model during horizontal reciprocating motions, the horizontal low-cycle reciprocating loading experiments were conducted using a synchronous loading technique. By analyzing the load-displacement hysteresis curves, envelope curves, deformation capacity, energy dissipation, and change in stiffness under different vertical loads, it is found that the timber frame exhibits obvious signs of self-restoring and favorable plastic deformation capacity. As the horizontal displacement increases, the equivalent viscous damping coefficient generally declines first and then increases. At the same time, the stiffness degrades rapidly first and then decreases slowly. Increasing vertical loading will improve the deformation, energy-dissipation capacity, and stiffness of the timber frame

    Vibration observation for a translational flexible-link manipulator based on improved Luenberger observer

    Get PDF
    The residual vibration is a very universal problem in flexible manipulators which are widely used in robot technology. This paper focuses on the soft measurement of the vibration signals for a translational flexible-link manipulator (TFLM) system. A vibration observer based on the improved Luenberger observer, which only requires the practical measurement values of the boundary positions, is designed to obtain the vibration signals of the TFLM. The main contribution of the vibration observer is its ability to simplify system structure and get the vibration signals of any point of the TFLM which is unrealistic by infinite sensors in practice. Furthermore, the improved part of the Luenberger observer is the added feedback coefficients for the tip vibration signals which can correct the observed mode and reduce the observation error markedly. And according to the stable conditions of observer, the added feedback coefficients are designed by Lyapunov technique and multiple population genetic algorithms (MPGA). Finally, the efficiency of the designed vibration observer is verified by combined-simulation
    corecore