173 research outputs found

    Time Is MattEr: Temporal Self-supervision for Video Transformers

    Full text link
    Understanding temporal dynamics of video is an essential aspect of learning better video representations. Recently, transformer-based architectural designs have been extensively explored for video tasks due to their capability to capture long-term dependency of input sequences. However, we found that these Video Transformers are still biased to learn spatial dynamics rather than temporal ones, and debiasing the spurious correlation is critical for their performance. Based on the observations, we design simple yet effective self-supervised tasks for video models to learn temporal dynamics better. Specifically, for debiasing the spatial bias, our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs. Also, our method learns the temporal flow direction of video tokens among consecutive frames for enhancing the correlation toward temporal dynamics. Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.Comment: Accepted to ICML 2022. Code is available at https://github.com/alinlab/temporal-selfsupervisio

    Environmental impacts comparison between on-site vs. prefabricated just-in-time (prefab-JIT) rebar supply in construction projects

    Get PDF
    In the on-site rebar delivery system, as the common method of rebar supply in the construction industry, reinforced steel bars are delivered in large batches from supplier's facilities through contractor's warehouse to the construction site. Rebars are then fabricated on-site and installed after assembly. In the new delivery system, called prefabrication Just-In-Time (prefab-JIT) system, the off-site cut and bend along with frequent rebar delivery to the site are applied in order to improve the process and increase its efficiency. The main objective of this paper is to assess and compare the environmental impacts resulting from the air emissions associated with the two rebar delivery systems in a case study construction project. Environmental impact categories of interest include global warming, acidification, eutrophication, and smog formation. A process-based cradle-to-gate life cycle assessment methodology is applied to perform the analysis. The results show that the prefab-JIT rebar delivery system causes less contribution to all mentioned environmental impact categories compared with a traditional on-site delivery system

    Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden-Popper perovskite solar cells

    Get PDF
    Layered Ruddlesden-Popper perovskite (RPP) photovoltaics have gained substantial attention owing to their excellent air stability. However, their photovoltaic performance is still limited by the unclear real-time charge-carrier mechanism of operating devices. Herein, we report the correlation between the charge-carrier mechanism and the spatially heterogeneous RPP bulks induced by distinct sublattice cations in the state-of-the-art antisolvent-driven RPP devices. In particular, abnormal heterogeneities ranging from the lateral long-range to local sub-grain scale and corresponding charge-carrier behaviours are visualized for triple-cation RPPs. We discovered that such heterogeneities with a unitary 2D/3D hybrid suppress lattice vibrations and reduce Frohlich interactions by about 2 times, significantly promoting charge-carrier dynamics. Consequently, optimized triple-cation RPP solar cells greatly outperform their mono-cation counterparts. Furthermore, this principle can be applicable irrespective of 2D layer thickness (n > 2) and substrate type. This work provides a rationale for leveraging a disordered structure to stimulate charge-carrier motion and suggests the design principle of low-dimensional perovskites.

    Risk of ventricular tachycardia and its outcomes in patients undergoing continuous renal replacement therapy due to acute kidney injury

    Get PDF
    Background Despite efforts to treat critically ill patients who require continuous renal replacement therapy (CRRT) due to acute kidney injury (AKI), their mortality risk remains high. This condition may be attributable to complications of CRRT, such as arrhythmias. Here, we addressed the occurrence of ventricular tachycardia (VT) during CRRT and its relationship with patient outcomes. Methods This study retrospectively enrolled 2,397 patients who started CRRT due to AKI from 2010 to 2020 at Seoul National University Hospital in Korea. The occurrence of VT was evaluated from the initiation of CRRT until weaning from CRRT. The odds ratios (ORs) of mortality outcomes were measured using logistic regression models after adjustment for multiple variables. Results VT occurred in 150 patients (6.3%) after starting CRRT. Among them, 95 cases were defined as sustained VT (i.e., lasting ≥30 seconds), and the other 55 cases were defined as non-sustained VT (i.e., lasting <30 seconds). The occurrence of sustained VT was associated with a higher mortality rate than a nonoccurrence (OR, 2.04 and 95% confidence interval [CI], 1.23–3.39 for the 30-day mortality; OR, 4.06 and 95% CI, 2.04–8.08 for the 90-day mortality). The mortality risk did not differ between patients with non-sustained VT and nonoccurrence. A history of myocardial infarction, vasopressor use, and certain trends of blood laboratory findings (such as acidosis and hyperkalemia) were associated with the subsequent risk of sustained VT. Conclusion Sustained VT occurrence after starting CRRT is associated with increased patient mortality. The monitoring of electrolytes and acid-base status during CRRT is essential because of its relationship with the risk of VT

    Fe???N/C Oxygen Reduction Reaction Catalysts with Controlled Structures for Understanding Catalyst Structure???Activity Relationship

    No full text
    School of Energy and Chemical Engineering (Chemical Engineering)ope

    Gen2 RFID-Based System Framework for Resource Circulation in Closed-Loop Supply Chains

    No full text
    Product recycling has become a mandatory activity under extended producer responsibility. Therefore, it is important to operate a closed-loop supply chain that integrates sourcing, production, delivery, and recycling to achieve not only environmental sustainability, but also economic benefits. However, this goal is affected by chronic problems caused by uncertainties relating to the return timing, quantity, and quality of returned items. Many studies proved that information visibility could solve these problems. In this context, a system framework for closed-loop supply chain management is proposed that gathers real-time information within a supply chain and product lifecycle by using the Internet-of-Things, including radio frequency identification (RFID). Specifically, the most recent Gen2 RFID protocol, which provides new features to create new positive effects, is considered. Additionally, an information system is designed, including RFID tag encoding, which supports the operation of the proposed system. Finally, the lifecycle benefits are examined, such as counterfeit prevention, real-time monitoring and maintenance in the middle-of-life phase, and reverse process streamlining. The ultimate aim is to design a system that facilitates the profitable and environmentally friendly operation of the closed-loop supply chain

    Designing a Lifecycle Integrated Data Network for Remanufacturing Using RFID Technology

    No full text
    Part IV: ICT and Emerging Technologies in Production ManagementInternational audienceWith the emergence of concerns regarding pollution and the exhaustion of resources, original equipment manufacturers have begun to take responsibility for environmentally sound manufacturing according to regulations that have been established. Manufacturers thus need to decide how much they will recycle and which options to pursue for minimizing operation costs and environmental impacts, while complying with regulations. They cannot, however, predict the quality of returned products, and as a result, the planning of recycling activities is not reliable. Moreover, the components of products all have different ages and lifetimes. Thus, there may be a number of components that can be recycled more than once. If the life history of these components is not available, though, recyclable components may be disposed of after being recycled once. In this paper, we propose an integrated data system that uses radio frequency identification technology to provide useful information that can make remanufacturing more efficient
    corecore