37 research outputs found

    Combined effects of tenofovir and interferon α1b on viral load and levels of peripheral regulatory T cells in chronic hepatitis B subjects

    Get PDF
    Purpose: To study the combined effects of tenofovir and interferon α1b on viral load and peripheral blood regulatory T cell concentrations of chronic hepatitis B (CHB) subjects. Methods: Patients with chronic hepatitis B (86 cases) were randomly assigned to two groups: control group and study group. In control subjects, tenofovir was given orally (300 mg/kg bwt/day). In addition to tenofovir, the study group received interferon α1b injection intramuscularly at a dose of 50 μg/kg thrice a week. Liver function, serum hepatitis B viral (HBV) load, and serum levels of peripheral blood regulatory T-lymphocytes were determined. Clinical effectiveness and adverse reactions in both groups were also assessed. Results: After treatment, total effectiveness was higher in the study group (86.04 %) than in control patients (62.79 %) (p < 0.05). Serum aspartate transaminase (AST), alanine aminotransferase (ALT) and total bilirubin (TBIL) significantly decreased in the study group, relative to control, but HBV DNAnegative, HbeAg-negative and HbsAg-negative cells were markedly higher in patients in the study group (p < 0.05). Moreover, there were higher CD4+ T and CD8+ T counts, and CD4+ T/CD8+ T ratio in study subjects than in control subjects (p < 0.05). Conclusion: The combination of tenofovir with interferon α1b effectively improves liver functions in patients with CHB, reduces viral load, and exerts anti-HBV effect by regulating the levels of peripheral blood T-lymphocytes

    Beneficial effects and safety of traditional Chinese medicine for chronic inflammatory demyelinating polyradiculoneuropathy: A case report and literature review

    Get PDF
    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated neuropathy. First-line treatments for CIDP include corticosteroids, intravenous immunoglobulin, and plasma exchange. However, the application is always limited by high costs, effectiveness, and adverse events. This study investigated a new potentially effective and safe therapeutic treatment to alleviate CIDP symptoms and improve the quality of life. In the present case, a 47-year-old rural woman presented with weakness and numbness of progressive extremities. She was diagnosed with CIDP based on abnormal cerebrospinal fluid and electromyography. The patient was treated with intravenous dexamethasone for 1 week and with Huangqi-Guizhi-Wuwu and Bu-Yang-Huan-Wu decoctions for 90 days. Surprisingly, after the treatment, the weakness and numbness were eliminated, and the quality of life improved. The varying INCAT, MRC, and BI scores also reflected the treatment effects. After 8 months of discharge, the symptoms did not relapse during the follow-up. We also searched “traditional Chinese medicine (TCM)” and “CIDP” in PubMed, EMBASE, the Web of Science, the Cochrane Library, the Chinese National Knowledge Infrastructure Databases, Wanfang Data, and the Chongqing Chinese Science and Technology Periodical Database. Finally, only ten studies were included in the literature review. Three studies were randomized controlled trials, and seven were case reports or case series. There were 419 CIDP patients, but all study sites were in China. Nine TCM formulas involving 44 herbs were reported, with Huang Qi (Astragalus membranaceus) being the most important herb. In conclusion, the case and literature demonstrated that TCM treatment might be a more effective, low-cost, and safe option for treating CIDP. Although these preliminary findings are promising, a larger sample size and higher-quality randomized clinical trials are urgently required to confirm our findings

    Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach

    No full text
    Background. Breast cancer is the most common malignancy among women worldwide, but the long-term endocrine therapy is frequently associated with adverse side effects. Danzhi Xiaoyao powder (DXP) is a herbal formula that has an effect on breast cancer, especially ER-positive breast cancer. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Methods. A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple known target collection, breast cancer genes collection, and network analysis has been used in this study. Results. Four networks are set up—namely, ER-positive breast cancer network, compound-compound target network of DXP, DXP-ER-positive breast cancer network, and compound-known target-ER-positive breast cancer network. Some ER-positive breast cancer and DXP related targets, clusters, biological processes, and pathways, and several potential anticancer compounds are found. Conclusion. This network analysis successfully predicted, illuminated, and confirmed the molecular synergy of DXP for ER-positive breast cancer, got potential anticancer active compounds, and found the potential ER-positive breast cancer associated targets, cluster, biological processes, and pathways. This work also provides clues to the researcher who explores ethnopharmacological or/and herbal medicine’s or even multidrugs’ various synergies

    Adaptive Learning Based Tracking Control of Marine Vessels with Prescribed Performance

    No full text
    A novel adaptive tracking controller of fully actuated marine vessels is proposed with completely unknown dynamics and external disturbances. The model of dominant dynamic behaviors and unknown disturbances of the vessel are learned by a neural network in real time. The controller is designed and it unifies backstepping and adaptive neural network techniques with predefined tracking performance constraints on the tracking convergence rate and the transient and steady-state tracking error. The stability of the proposed adaptive tracking controller of the vessel is proven with a uniformly bounded tracking error. The proposed adaptive tracking controller is shown to be effective in the tracking control of marine vessels by simulations

    The Effect of Hedysarum multijugum Maxim.-Chuanxiong rhizoma Compound on Ischemic Stroke: A Research Based on Network and Experimental Pharmacology

    No full text
    Background. Hedysarum multijugum Maxim.-Chuanxiong rhizoma compound (HCC) is a common herbal formula modified from Buyang Huanwu decoction. Clinical trials have demonstrated its therapeutic potential for ischemic stroke (IS). However, the mechanism of HCC remains unclear. Methods. The HCC’s components were collected from the TCMSP database and TCM@Taiwan database. After that, the HCC’s compound targets were predicted by PharmMapper. The IS-related genes were obtained from GeneCards, and OMIM and the protein-protein interaction (PPI) data of HCC’s targets and IS genes were obtained from the String database. After that, the DAVID platform was applied for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis and the Cytoscape 3.7.2 was utilized to construct and analyze the networks. Finally, a series of animal experiments were carried out to validate the prediction results of network pharmacology. The expressions of GRP78, p-PERK, and CHOP proteins and mRNAs in different time periods after HCC intervention were detected by Western blot, immunohistochemistry, and RT-qPCR. Results. A total of 440 potential targets and 388 IS genes were obtained. The results of HCC-IS PPI network analysis showed that HCC may regulate IS-related targets (such as ALB, AKT1, MMP9, IGF1, and CASP3), biological processes (such as endoplasmic reticulum stress, inflammation modules, hypoxia modules, regulation of neuronal apoptosis and proliferation, and angiogenesis), and signaling pathways (such as PI3K-Akt, FoxO, TNF, HIF-1, and Rap1 signaling). The animal experiments showed that HCC can improve the neurobehavioral scores and protect the neurons of IS rats (P<0.05). HCC inhibited the expression of p-PERK in the PERK pathway from 12 h after surgery, significantly promoted the expression of GRP78 protein, and inhibited the expression of CHOP protein after surgery, especially at 24 h after surgery (P<0.05). The results of RT-qPCR showed that HCC can significantly reduce the expression of CHOP mRNA in the neurons in the CA1 region of the hippocampus 72 h after MCAO (P<0.05). Conclusion. HCC may achieve a role in the treatment of IS by intervening in a series of targets, signaling pathways, and biological processes such as inflammation, oxidative stress, endoplasmic reticulum stress, and angiogenesis

    A Survey on Multimodal Knowledge Graphs: Construction, Completion and Applications

    No full text
    As an essential part of artificial intelligence, a knowledge graph describes the real-world entities, concepts and their various semantic relationships in a structured way and has been gradually popularized in a variety practical scenarios. The majority of existing knowledge graphs mainly concentrate on organizing and managing textual knowledge in a structured representation, while paying little attention to the multimodal resources (e.g., pictures and videos), which can serve as the foundation for the machine perception of a real-world data scenario. To this end, in this survey, we comprehensively review the related advances of multimodal knowledge graphs, covering multimodal knowledge graph construction, completion and typical applications. For construction, we outline the methods of named entity recognition, relation extraction and event extraction. For completion, we discuss the multimodal knowledge graph representation learning and entity linking. Finally, the mainstream applications of multimodal knowledge graphs in miscellaneous domains are summarized
    corecore