44 research outputs found

    Exploiting the Diversity of the Heat-Shock Protein Family for Primary and Secondary Tauopathy Therapeutics

    Get PDF
    The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease

    Rhodacyanine Derivative Selectively Targets Cancer Cells and Overcomes Tamoxifen Resistance

    Get PDF
    MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB). Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family

    Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden

    Get PDF
    Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.http://deepblue.lib.umich.edu/bitstream/2027.42/78314/1/1750-1326-5-45.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/2/1750-1326-5-45.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/3/1750-1326-5-45-S1.PDFPeer Reviewe

    A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51

    Get PDF
    The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies

    Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA)

    No full text
    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032. Keywords: Withaferin A, Microglial cell line, SILAC, Proteomics, Mass spectrometr

    Reconstructing the Hsp90/Tau Machine

    No full text

    Cysteine Reactivity Distinguishes Redox Sensing by the Heat-Inducible and Constitutive Forms of Heat Shock Protein 70

    Get PDF
    The heat shock protein 70 (Hsp70) family of molecular chaperones has important functions in maintaining proteostasis under stress conditions. Several Hsp70 isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response to stress; however, it is unclear whether these family members have biochemical properties that are specifically adapted to these scenarios. The redox-active compound, methylene blue (MB), has been shown to inhibit the ATPase activity of Hsp72 in vitro, and it promotes degradation of the Hsp72 substrate, tau, in cellular and animal models. Here, we report that MB irreversibly inactivates Hsp72 but not the nearly identical, constitutively expressed isoform, heat shock cognate 70 (Hsc70; HSPA8). Mass spectrometry results show that MB oxidizes Cys306, which is not conserved in Hsc70. Molecular models suggested that oxidation of Cys306 exposes Cys267 to modification and that both events contribute to loss of ATP binding in response to MB. Consistent with this model, mutating Cys267 and Cys306 to serine made Hsp72 largely resistant to MB in vitro, and overexpression of the C306S mutant blocked MB-mediated loss of tau in a cellular model. Furthermore, mutating Cys267 and Cys306 to the pseudo-oxidation mimic, aspartic acid, mirrored MB treatment: the C267D and C306D mutants had reduced ATPase activity in vitro, and overexpression of the C267/306D double mutant significantly reduced tau levels in cells. Together, these results suggest that redox sensing by specific cysteine residues in Hsp72, but not Hsc70, may be an important component of the chaperone response to oxidative stress
    corecore