39 research outputs found
Transient quantum transport in double-dot Aharonov-Bohm interferometers
Real-time nonequilibrium quantum dynamics of electrons in double-dot
Aharonov-Bohm (AB) interferometers is studied using an exact solution of the
master equation. The building of the coherence between the two electronic paths
shows up via the time-dependent amplitude of the AB oscillations in the
transient transport current, and can be enhanced by varying the applied bias on
the leads, the on-site energy difference between the dots and the asymmetry of
the coupling of the dots to the leads. The transient oscillations of the
transport current do not obey phase rigidity. The circulating current has an
anti-symmetric AB oscillation in the flux. The non-degeneracy of the on-site
energies and the finite bias cause the occupation in each dot to have an
arbitrary flux dependence as the coupling asymmetry is varied.Comment: 11 pages, 5 figure
Methylglyoxal Impairs Insulin Secretion of Pancreatic β
Methylglyoxal (MG) is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS) production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP) and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production
Industrial Development Layout and Competitiveness Evaluation Based on Correlation Analysis between Power and Industry
The change of industrial structure has a significant impact on energy consumption. The coordinated development between energy structure and industrial structure has a profound impact on the steady development of national economy and society. In this paper, focusing on the needs of industrial development layout and combining with the scenario of dual-carbon target constraint setting, a power-industry management analysis model is constructed, and a differentiated screening mechanism of industrial layout is realized under the three scenario Settings of dual-carbon target. According to the industrial development layout of Xinjiang, this paper studies the relationship between industrial development and energy and electricity consumption under different scenarios, selects the key industries according to the requirements of different scenarios, and carries out the scene comparison evaluation based on the industrial competitiveness evaluation. Finally, the paper puts forward specific suggestions from the perspectives of applying the coordinated layout of different scenes in stages, taking into account the coordination of regional layout, and striving for the practical linkage between industry and electric power
High expression level of the FTH1 gene is associated with poor prognosis in children with non-M3 acute myeloid leukemia
Acute myelogenous leukemia (AML) is a disease that severely affects the physical health of children. Thus, we aimed to identify biomarkers associated with AML prognosis in children. Using transcriptomics on an mRNA dataset from 27 children with non-M3 AML, we selected genes from among those with the top 5000 median absolute deviation (MAD) values for subsequent analysis which showed that two modules were associated with AML risk groups. Thus, enrichment analysis was performed using genes from these modules. A one-way Cox analysis was performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA. This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1. Through survival analysis, FTH1 was identified as a key gene associated with AML prognosis. We verified the proliferative and regulatory effects of ferroptosis on MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8 and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time quantitative PCR, which showed that upregulated FTH1 expression promoted proliferation and inhibited apoptosis in leukemia cells. In conclusion, high expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic cells through the ferroptosis pathway and is thus a potential risk factor that affects the prognosis of non-M3 AML in children
Cytogenetic diversity of simple sequences repeats in morphotypes of Brassica rapa ssp. chinensis
A significant fraction of the nuclear DNA of all eukaryotes is occupied by simple sequence repeats (SSRs). Although thesis sequences have sparked great interest as a means of studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. This paper report the long-range organization of all possible classes of mono-, di- and tri-nucleotide SSRs in Brassica rapa. Fluorescence in situ hybridization (FISH) was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphtypes of B. rapa, with trinucleotide SSRs more prevalent in the genome of B. rapa ssp. chinensis. The chromosomal characterizations of mono-, di- and tri-nucleotide repeats have been acquired. The data has revealed the non-random and motif-dependent chromosome distribution of SSRs in different morphtypes, and allowed the relative variability characterized by SSRs amount and similar chromosomal distribution in centromeric/peri-centromeric heterochromatin. The differences of SSRs in the abundance and distribution indicated the driving force of SSRs in relationship with the evolution of B. rapa species. The results provided a comprehensive view on the SSR sequence distribution and evolution for comparison among morphtypes B. rapa ssp. chinensis
Severe Inflammation Caused by Coinfection of PCV2 and Glaesserella parasuis Is Associated with Pyroptosis via Noncanonical Inflammasome Pathway
Coinfections of porcine circovirus type 2 (PCV2) and Glaesserella parasuis (G. parasuis) are widely existing in the swine industry worldwide. However, the mechanisms for this coinfection remain unclear. The aim of this study is to assess whether the coinfection PCV2 and G. parasuis would affect the inflammatory response and related mechanisms. In this study, BALB/c mice and RAW264.7 cells were used to study the inflammation and related mechanism caused by the coinfection of PCV2 and G. parasuis. Coinfection with PCV2 and G. parasuis significantly increased the mortality of mice and led to the development of more severe lung and spleen lesions compared with single agent infection. Especially, coinfection significantly increased the bacterial loads in the lungs. Coinfection with PCV2 and G. parasuis can enhance RAW264.7 cell phagocytosis and elimination to G. parasuis. Cell death rate of cells increased in coinfection was measured with Flow cytometry. Moreover, coinfection led to the downregulation of the expression of TNFα and IL-8 in comparison with G. parasuis infection, but the maturation of interleukin-1β (IL-1β) was significantly upregulated. Our study firstly revealed that coinfection of PCV2 and G. parasuis can increase the phagocytosis of cells to G. parasuis, and LPS in the cytoplasm will induce the maturation of caspase-11 and lead to the cleavage of Gasdermin D (GSDMD) to cause pyroptosis by noncanonical pathway. The revealing of mechanisms associated with coinfection with PCV2 and G. parasuis will provide a scientific basis for investigating the synergistic infection mechanisms between viruses and bacteria
A Probabilistic Model for Parametric Fairness in Isabelle/HOL ⋆
Abstract. In paper [1], a liveness proof method suitable for inductive protocol verification is proposed. The utility of this method has been confirmed by several machine checked formal verifications[2–4]. One remaining question about [1] is the meaning of Parametric Fairness, a new fairness notion adapted from Pnueli’s Extreme Fairness[5] to suit the setting of higher-order logic. This paper tries to answer this question. As a standard practice in establishing a fairness notion, this paper constructs a probabilistic model for parametric fairness in Isabelle/HOL. Using this model, it is shown that most infinite executions of a concurrent system are parametrically fair. Therefore the definition of parametric fairness in paper [1] is reasonable. This work gives a firmer basis for existing and forthcoming formal verifications based on the method of paper [1]