113 research outputs found

    Identification of novel maize miRNAs by measuring the precision of precursor processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are known to play important regulatory roles throughout plant development. Until recently, nearly all the miRNAs in maize were identified by comparative analysis to miRNAs sequences of other plant species, such as rice and <it>Arabidopsis</it>.</p> <p>Results</p> <p>To find new miRNA in this important crop, small RNAs from mixed tissues were sequenced, resulting in over 15 million unique sequences. Our sequencing effort validated 23 of the 28 known maize miRNA families, including 49 unique miRNAs. Using a newly established criterion, based on the precision of miRNA processing from precursors, we identified 66 novel miRNAs in maize. These miRNAs can be grouped into 58 families, 54 of which have not been identified in any other species. Five new miRNAs were validated by northern blot. Moreover, we found targets for 23 of the 66 new miRNAs. The targets of two of these newly identified miRNAs were confirmed by 5'RACE.</p> <p>Conclusion</p> <p>We have implemented a novel method of identifying miRNA by measuring the precision of miRNA processing from precursors. Using this method, 66 novel miRNAs and 50 potential miRNAs have been identified in maize.</p

    Review Article Lgr4 in Ocular Development and Glaucoma

    Get PDF
    The leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4, also called GPR48) plays a key role in multiple developmental processes, and mice lacking Lgr4 display anterior segment dysgenesis leading to early-onset glaucomatous retinal ganglion cell loss as well as defective eyelid formation. This paper will review Lgr4 signaling and its regulation of the AxenfeldRieger syndrome gene Pitx2, a crucial developmental transcription factor. In addition, Wnt signaling plays an important role in eye development, with Norrin functioning to activate the Wnt receptor Frizzled 4 required for proper retinal vascularization. Recent discoveries identifying Lgr4 as a receptor for Norrin highlight the potential for Lgr4 function in retinal vascularization. Finally, several unanswered questions impeding a full understanding of Lgr4 in glaucoma are considered as avenues for further research

    On the Tetraploid Origin of the Maize Genome

    Get PDF
    Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya

    Lgr4 in Ocular Development and Glaucoma

    Get PDF
    The leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4, also called GPR48) plays a key role in multiple developmental processes, and mice lacking Lgr4 display anterior segment dysgenesis leading to early-onset glaucomatous retinal ganglion cell loss as well as defective eyelid formation. This paper will review Lgr4 signaling and its regulation of the Axenfeld-Rieger syndrome gene Pitx2, a crucial developmental transcription factor. In addition, Wnt signaling plays an important role in eye development, with Norrin functioning to activate the Wnt receptor Frizzled 4 required for proper retinal vascularization. Recent discoveries identifying Lgr4 as a receptor for Norrin highlight the potential for Lgr4 function in retinal vascularization. Finally, several unanswered questions impeding a full understanding of Lgr4 in glaucoma are considered as avenues for further research

    Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize

    Get PDF
    Background Sugarcane mosaic virus (SCMV) disease causes substantial losses of grain yield and forage biomass in susceptible maize cultivars. Maize resistance to SCMV is associated with two dominant genes, Scmv1 and Scmv2, which are located on the short arm of chromosome 6 and near the centromere region of chromosome 3, respectively. We combined both linkage and association mapping to identify positional candidate genes for Scmv1. Results Scmv1 was fine-mapped in a segregating population derived from near-isogenic lines and further validated and fine-mapped using two recombinant inbred line populations. The combined results assigned the Scmv1 locus to a 59.21-kb interval, and candidate genes within this region were predicted based on the publicly available B73 sequence. None of three predicted genes that are possibly involved in the disease resistance response are similar to receptor-like resistance genes. Candidate gene–based association mapping was conducted using a panel of 94 inbred lines with variable resistance to SCMV. A presence/absence variation (PAV) in the Scmv1 region and two polymorphic sites around the Zmtrx-h gene were significantly associated with SCMV resistance. Conclusion Combined linkage and association mapping pinpoints Zmtrx-h as the most likely positional candidate gene for Scmv1. These results pave the way towards cloning of Scmv1 and facilitate marker-assisted selection for potyvirus resistance in maize

    A facile and general approach for the synthesis of fluorescent silica nanoparticles doped with inert dyes

    Get PDF
    A general and facile approach was developed for the synthesis of almost monodisperse fluorescent silica nanoparticles (NPs) doped with inert dyes, which are organic fluorophores that are strongly fluorescent but are hydrophobic or lack a covalent binding group. The prepared NPs were mesoporous and the dye molecules were encapsulated in the pores via hydrophobic interaction with the CTAB template. The NPs were stable and highly fluorescent in aqueous solution, and have potential applications in bioanalysis and fluorescence encoding.National Natural Science Foundation of China[20875079, 20835005]; Planned Science and Technology Project of Xiamen, China[3502z20080011]; Specialized Research Fund for the Doctoral Program of Higher Education of China[200803840007

    Molecule-scale controlled-release system based on light-responsive silica nanoparticles

    Get PDF
    We report a molecule-scale controlled-release system based on silica nanoparticles bearing a photoactive o-nitrobenzyl bromide linkage, which allows cage and release of drug or biologically active molecules by light

    Conference Review On the tetraploid origin of the maize genome

    Get PDF
    Abstract Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya

    Trimetazidine Attenuates Cardiac Dysfunction in Endotoxemia and Sepsis by Promoting Neutrophil Migration

    Get PDF
    Aims: Cardiac dysfunction can be a fatal complication during severe sepsis. The migration of neutrophils is significantly impaired during severe sepsis. We sought to determine the role of trimetazidine (TMZ) in regulation of neutrophil migration to the heart in a mouse model of sepsis and endotoxemia, and to identify the mechanism whereby TMZ confers a survival advantage.Methods and Results: C57/BL6 mice were (1) injected with LPS followed by 24-h TMZ administration, or (2) treated with TMZ (20 mg/kg/day) for 1 week post cecal ligation and puncture (CLP) operation. Echocardiography and Millar system detection showed that TMZ alleviated cardiac dysfunction and histological staining showed the failure of neutrophils migration to heart in both LPS- and CLP-induced mice. Bone marrow transplantation revealed that TMZ-pretreated bone marrow cells improved LPS- and CLP-induced myocardial dysfunction and enhanced neutrophil recruitment in heart. In CXCL2-mediated chemotaxis assays, TMZ increased neutrophils migration via AMPK/Nrf2-dependent up-regulation of CXCR2 and inhibition of GRK2. Furthermore, using luciferase reporter gene and chromatin immunoprecipitation assays, we found that TMZ promoted the binding of the Nrf2 and CXCR2 promoter regions directly. Application of CXCR2 inhibitor completely reversed the protective effects of TMZ in vivo. Co-culture of neutrophils and cardiomyocytes further validated that TMZ decreased LPS-induced cardiomyocyte pyroptosis by targeting neutrophils.Conclusion: Our findings suggested TMZ as a potential therapeutic agent for septic or endotoxemia associated cardiac dysfunction in mice.STUDY HIGHLIGHTS What is the current knowledge on the topic?Migration of neutrophils is significantly impaired during severe sepsis, but the underlying mechanisms remain unknown.What question did this study address?The effects of TMZ on cardiac dysfunction via neutrophils migration.What this study adds to our knowledgeTMZ attenuated LPS-induced cardiomyocyte pyroptosis and cardiac dysfunction by promoting neutrophils recruitment to the heart tissues via CXCR2.How this might change clinical pharmacology or translational scienceOur findings suggested TMZ as a potential therapeutic agent for septic cardiac dysfunction
    corecore