9 research outputs found
Stand spatial structure is more important than species diversity in enhancing the carbon sink of fragile natural secondary forest
Increasing attention for adjusting forest structural and species diversity has been paid to enhance carbon storage. However, the relative importance of stand spatial structural diversity and species diversity to restored stand carbon stocks remains unclear. To address this issue, we conducted a sample plot setup in the Loess Plateau with the aim of exploring the effects of stand spatial structural diversity and species diversity on forest carbon stocks. Therefore, we determined index parameters for species diversity (Simpson, Shannon-Wiener, and Pielou) and spatial structural diversity (Angular scale, Mingling, Aggregation, and Competition) within the oak forest ecosystem. We examined carbon storage in all vegetation organs and different soil layers. Additionally, we employed a structural equation model to develop a model that illustrates the effects of stand spatial structure and species diversity on ecosystem carbon storage. The results reveal that stand spatial structure and species diversity influence the ecosystem carbon storage through biomass (trees and litter) and soil carbon (0–100 cm). Stand spatial structure exhibits positive direct effects (path coefficients: 0.764 and 0.890), while species diversity shows negative direct effects (−0.320 and −0.206) on biomass and soil carbon, respectively. Finally, the total effect of spatial structure diversity on forest carbon storage surpasses that of species diversity. Therefore, stand spatial structure should be adjusted preferentially during forest management in fragile ecological environment. Our results provide important insights into the climate change mitigation potential associated with the structure-based management of forests
Ultrafast high-temperature sintering of high-entropy oxides with refined microstructure and superior lithium-ion storage performance
High-entropy oxides (HEOs) have received significant attention because of their tunable mechanical properties and wide range of functional applications. However, the conventional method used for sintering HEOs requires prolonged processing time, which results in excessive grain growth, thereby compromising their performance. Here, an ultrafast high-temperature sintering (UHS) strategy was adopted, and rock-salt composite (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O was selected as model materials. Experimental parameters were tuned to illustrate the influence of applied current and soaking time on the densification process and resulting grain size. Additionally, the electrochemical performance of UHS-synthesized microparticles as anode materials in lithium-ion batteries was investigated. The results show that the ultrafast heating rate results in fine grains with a diameter of ~6–8 μm and density of 95%, which are much smaller and similar to those obtained using the conventional sintering method (25 μm and 96%). Moreover, the high surface area and reactivity of the microparticles, as well as their sluggish diffusion effect and structural stability, contribute to outstanding performance with high capacity (336 mA·h/g at 1 A/g) and ultralong cyclability (1000 cycles). This novel technique offers valuable insights into the densification process of HEOs and other materials and can thus broaden their application range
TRIM25 predominately associates with anti-viral stress granules
Abstract Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25’s ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors
Identification and Characterization of <i>EI</i> (<i>Elongated Internode</i>) Gene in Tomato (<i>Solanum lycopersicum</i>)
Internode length is an important agronomic trait affecting plant architecture and crop yield. However, few genes for internode elongation have been identified in tomato. In this study, we characterized an elongated internode inbred line P502, which is a natural mutant of the tomato cultivar 05T606. The mutant P502 exhibits longer internode and higher bioactive GA concentration compared with wild-type 05T606. Genetic analysis suggested that the elongated internode trait is controlled by quantitative trait loci (QTL). Then, we identified a major QTL on chromosome 2 based on molecular markers and bulked segregant analysis (BSA). The locus was designated as EI (Elongated Internode), which explained 73.6% genetic variance. The EI was further mapped to a 75.8-kb region containing 10 genes in the reference Heinz 1706 genome. One single nucleotide polymorphism (SNP) in the coding region of solyc02g080120.1 was identified, which encodes gibberellin 2-beta-dioxygenase 7 (SlGA2ox7). SlGA2ox7, orthologous to AtGA2ox7 and AtGA2ox8, is involved in the regulation of GA degradation. Overexpression of the wild EI gene in mutant P502 caused a dwarf phenotype with a shortened internode. The difference of EI expression levels was not significant in the P502 and wild-type, but the expression levels of GA biosynthetic genes including CPS, KO, KAO, GA20ox1, GA20ox2, GA20ox4, GA3ox1, GA2ox1, GA2ox2, GA2ox4, and GA2ox5, were upregulated in mutant P502. Our results may provide a better understanding of the genetics underlying the internode elongation and valuable information to improve plant architecture of the tomato